论文标题

部分可观测时空混沌系统的无模型预测

Probing complex stacking in a layered material via electron-nuclear quadrupolar coupling

论文作者

Cheng, Li, Nie, Linpeng, Long, Xuanyu, Liang, Li, Zhao, Dan, Li, Jian, Liu, Zheng, Wu, Tao, Chen, Xianhui, Zou, Xiaolong

论文摘要

对于分层材料,层间堆叠是一种临界的自由度调整电子特性的程度,而其显微镜表征面临着巨大的挑战。过渡金属二甲基化元素1T-TAS $ _2 $代表了一个新例子,其中堆叠模式不仅受到内层电荷密度波的自发发生的富集,而且也被认为是理解低温绝缘阶段的性质的关键。我们将$^{33} \ rm {s} $ nuclei在1T-TAS $ _2 $单晶中用作局部堆叠模式的敏感探针,这是通过将二次极线耦合到附近电子密度分布的局部堆叠模式,并通过将核磁共振(NMR)测量的核电磁性(NMR)测量与状态级别的优先级化相结合。通过温度,磁场和依赖角度的NMR光谱分析我们的建议的适用性。单个1T-TAS $ _2 $ layer的系统模拟,具有不同堆叠模式的双层和三维(3D)结构中的典型堆叠顺序揭示了不同的NMR特征。特别是,一个3D结构与实验光谱达成了定量一致,该频谱清楚地将两种类型的界面环境的共存合理化。我们的方法可能会在分层材料的研究中找到一般应用。

For layered materials, the interlayer stacking is a critical degree of freedom tuning electronic properties, while its microscopic characterization faces great challenges. The transition-metal dichalcogenide 1T-TaS$_2$ represents a novel example, in which the stacking pattern is not only enriched by the spontaneous occurrence of the intralayer charge density wave, but also recognized as a key to understand the nature of the low-temperature insulating phase. We exploit the $^{33}\rm{S}$ nuclei in a 1T-TaS$_2$ single crystal as sensitive probes of the local stacking pattern via quadrupolar coupling to the electron density distribution nearby, by combining nuclear magnetic resonance (NMR) measurements with the state-of-the-art first-principles electric-field gradient calculations. The applicability of our proposal is analyzed through temperature, magnetic-field, and angle dependent NMR spectra. Systematic simulations of a single 1T-TaS$_2$ layer, bilayers with different stacking patterns, and typical stacking orders in three-dimensional (3D) structures unravel distinct NMR characteristics. Particularly, one 3D structure achieves a quantitative agreement with the experimental spectrum, which clearly rationalizes the coexistence of two types of interfacial environments. Our method may find general applications in the studies of layered materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源