论文标题

$ \左(1+3 \右)$ dimensional minkowski时空的全球径向极端超出表方程

Global well-posedness for radial extremal hypersurface equation in $\left(1+3 \right)$-dimensional Minkowski space-time in critical Sobolev space

论文作者

Wang, Sheng, Zhou, Yi

论文摘要

在本文中,我们证明了在关键的Sobolev空间中的全球范围,$ h_ {rad}^2 \ left(\ Mathbb {r}^2 \ right)\ times h_ {rad}^1 \ left(\ mathbb {r}^r}^2 \右) Minkowski时空。这是通过推导新的Div-Curl型引理来实现的,并将其与能量和``动量''平衡法相结合,以获得对非线性的一些时空估计。

In this article, we prove the global well-posedness in the critical Sobolev space $H_{rad}^2\left(\mathbb{R}^2\right) \times H_{rad}^1 \left(\mathbb{R}^2\right)$ for the radial time-like extremal hypersurface equation in $\left(1+3\right)$- dimensional Minkowski space-time. This is achieved by deriving a new div-curl type lemma and combined it with energy and ``momentum" balance law to get some space-time estimates of the nonlinearity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源