论文标题
通过深度学习消除中性氢强度映射的极化泄漏效应
Eliminating polarization leakage effect for neutral hydrogen intensity mapping with deep learning
论文作者
论文摘要
中性氢(HI)强度映射(IM)调查被认为是宇宙大规模结构(LSS)研究的有前途的方法。 HI IM调查的一个主要问题是消除明亮的前景污染。成功删除明亮前景的关键是妥善控制或消除仪器效果。在这项工作中,我们考虑了极化泄漏的工具效应,并使用U-NET方法(一种基于深度学习的前景去除技术)来消除极化泄漏效应。与未来的HI IM调查相比,假定热噪声是一个亚域因子,并且在此分析中被忽略。在此方法中,主成分分析(PCA)前景减法用作U-NET前景减法的预处理步骤。我们的结果表明,额外的U-NET处理可以在保守的PCA减法后清除前景残留,或者补偿由侵略性PCA预处理引起的信号损失。最后,我们测试了U-NET前景减法技术的鲁棒性,并表明在HI波动振幅上现有的约束误差的情况下,它仍然可靠。
The neutral hydrogen (HI) intensity mapping (IM) survey is regarded as a promising approach for cosmic large-scale structure (LSS) studies. A major issue for the HI IM survey is to remove the bright foreground contamination. A key to successfully remove the bright foreground is to well control or eliminate the instrumental effects. In this work, we consider the instrumental effect of polarization leakage and use the U-Net approach, a deep learning-based foreground removal technique, to eliminate the polarization leakage effect. The thermal noise is assumed to be a subdominant factor compared with the polarization leakage for future HI IM surveys and ignored in this analysis. In this method, the principal component analysis (PCA) foreground subtraction is used as a preprocessing step for the U-Net foreground subtraction. Our results show that the additional U-Net processing could either remove the foreground residual after the conservative PCA subtraction or compensate for the signal loss caused by the aggressive PCA preprocessing. Finally, we test the robustness of the U-Net foreground subtraction technique and show that it is still reliable in the case of existing constraint error on HI fluctuation amplitude.