论文标题

部分可观测时空混沌系统的无模型预测

A Stable, Recursive Auxiliary Field Quantum Monte Carlo Algorithm in the Canonical Ensemble: Applications to Thermometry and the Hubbard Model

论文作者

Shen, Tong, Barghathi, Hatem, Yu, Jiangyong, Del Maestro, Adrian, Rubenstein, Brenda

论文摘要

许多实验可访问的有限大小相互作用的量子系统最适当地描述了统计力学的规范集合。传统的数值模拟方法将它们近似为耦合到粒子浴,或者使用射影算法,这些算法可能会遭受具有系统尺寸或大算法的预测剂的非最佳缩放尺度。在本文中,我们引入了一种高度稳定的递归辅助场量子蒙特卡洛方法,该方法可以直接模拟规范集合中的系统。我们将该方法应用于一个已知具有重要“符号”问题的政权中的一个和两个空间维度,将方法应用于Fermion Hubbard模型,并在现有方法中发现了改善的性能,包括快速收敛到基础状态期望值。使用估计量不足的方法来量化激发的影响,包括研究规范和大规范密度矩阵的纯度和重叠的温度依赖性。作为一个重要的应用,我们表明,在超冷原子中通常利用的热度法方法对大规范合奏中的速度分布进行分析可能会遭受错误的错误,从而导致相对于费米温度的提取温度低估。

Many experimentally-accessible, finite-sized interacting quantum systems are most appropriately described by the canonical ensemble of statistical mechanics. Conventional numerical simulation methods either approximate them as being coupled to a particle bath, or use projective algorithms which may suffer from non-optimal scaling with system size or large algorithmic prefactors. In this paper, we introduce a highly stable, recursive Auxiliary Field Quantum Monte Carlo approach that can directly simulate systems in the canonical ensemble. We apply the method to the fermion Hubbard model in one and two spatial dimensions in a regime known to exhibit a significant "sign" problem and find improved performance over existing approaches including rapid convergence to ground state expectation values. The effects of excitations above the ground state are quantified using an estimator-agnostic approach including studying the temperature dependence of the purity and overlap fidelity of the canonical and grand canonical density matrices. As an important application, we show that thermometry approaches often exploited in ultra-cold atoms that employ an analysis of the velocity distribution in the grand canonical ensemble may be subject to errors leading to an under-estimation of extracted temperatures with respect to the Fermi temperature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源