论文标题

通过脱氧扩散概率模型统一人类运动合成和样式转移

Unifying Human Motion Synthesis and Style Transfer with Denoising Diffusion Probabilistic Models

论文作者

Chang, Ziyi, Findlay, Edmund J. C., Zhang, Haozheng, Shum, Hubert P. H.

论文摘要

为数字人类生成现实动作是计算机动画和游戏的核心但挑战性的一部分,因为人类动作的内容既多样化又具有丰富的风格。尽管最新的深度学习方法在该领域取得了重大进步,但它们主要将运动合成和风格操纵视为两个单独的问题。这主要是由于学习两种运动内容的挑战,这些运动内容构成了阶层间行为和样式在共同表示中有效地解释了阶层内行为的样式。为了应对这一挑战,我们提出了一种用于样式运动合成的扩散概率模型解决方案。由于扩散模型具有由随机性注射带来的高容量,因此我们可以代表同一潜在的阶层间运动内容和类内样式行为。这导致了一条集成的端到端训练的管道,从而有助于对内容式耦合潜在空间的最佳运动和探索产生。为了获得高质量的结果,我们设计了扩散模型的多任务架构,该模型从战略上生成了人类动作的本地指导方面。我们还为全球指导设计对抗和物理法规。我们通过定量和定性结果表现出卓越的性能,并验证多任务架构的有效性。

Generating realistic motions for digital humans is a core but challenging part of computer animations and games, as human motions are both diverse in content and rich in styles. While the latest deep learning approaches have made significant advancements in this domain, they mostly consider motion synthesis and style manipulation as two separate problems. This is mainly due to the challenge of learning both motion contents that account for the inter-class behaviour and styles that account for the intra-class behaviour effectively in a common representation. To tackle this challenge, we propose a denoising diffusion probabilistic model solution for styled motion synthesis. As diffusion models have a high capacity brought by the injection of stochasticity, we can represent both inter-class motion content and intra-class style behaviour in the same latent. This results in an integrated, end-to-end trained pipeline that facilitates the generation of optimal motion and exploration of content-style coupled latent space. To achieve high-quality results, we design a multi-task architecture of diffusion model that strategically generates aspects of human motions for local guidance. We also design adversarial and physical regulations for global guidance. We demonstrate superior performance with quantitative and qualitative results and validate the effectiveness of our multi-task architecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源