论文标题

资源互动图:有效的用于异常检测的图形表示

Resource-Interaction Graph: Efficient Graph Representation for Anomaly Detection

论文作者

Pope, James, Liang, Jinyuan, Kumar, Vijay, Raimondo, Francesco, Sun, Xinyi, McConville, Ryan, Pasquier, Thomas, Piechocki, Rob, Oikonomou, George, Luo, Bo, Howarth, Dan, Mavromatis, Ioannis, Mompo, Adrian Sanchez, Carnelli, Pietro, Spyridopoulos, Theodoros, Khan, Aftab

论文摘要

安全研究集中在将操作系统审核日志转换为合适的图表,例如出处图,以进行分析。但是,出处图可以增长很大,需要大量的计算资源超出许多安全任务所需的内容,并且对于资源约束环境(例如边缘设备)不可行。为了解决此问题,我们提供直接从审核日志构建的\ textit {Resource-Interaction Graph}。我们表明,使用开源数据集,资源互动图的存储要求明显低于出处图,并带有两个从边缘设备捕获的容器逃生攻击。我们使用图形自动编码器和图形聚类技术来评估用于异常检测任务的表示形式。两种方法都是无监督的,因此适合检测零日攻击。对于所选的数据集和攻击,这些方法可以达到通常超过80 \%的F1分数,在某些情况下可以达到90 \%。

Security research has concentrated on converting operating system audit logs into suitable graphs, such as provenance graphs, for analysis. However, provenance graphs can grow very large requiring significant computational resources beyond what is necessary for many security tasks and are not feasible for resource constrained environments, such as edge devices. To address this problem, we present the \textit{resource-interaction graph} that is built directly from the audit log. We show that the resource-interaction graph's storage requirements are significantly lower than provenance graphs using an open-source data set with two container escape attacks captured from an edge device. We use a graph autoencoder and graph clustering technique to evaluate the representation for an anomaly detection task. Both approaches are unsupervised and are thus suitable for detecting zero-day attacks. The approaches can achieve f1 scores typically over 80\% and in some cases over 90\% for the selected data set and attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源