论文标题

二次差异作为稳定条件:崩溃的子表面

Quadratic differentials as stability conditions: collapsing subsurfaces

论文作者

Barbieri, Anna, Möller, Martin, Qiu, Yu, So, Jeonghoon

论文摘要

我们介绍了一类新的三角类别类别,这些类别是(装饰)标记表面的三 - 谷物yau类别的verdier商,并表明其稳定条件的空间可以用带有riemann表面的模量二次差速器的模量识别,该空间具有带有任意顺序的Zeros Zeros Zeros和Punterary Comperres Poles。我们证明的一个主要工具是对两个交换图的比较,该图是通过在商类别中倾斜的心脏而获得的,并通过翻转与二次差异相关的混合角度来获得。

We introduce a new class of triangulated categories, which are Verdier quotients of three-Calabi-Yau categories from (decorated) marked surfaces, and show that its spaces of stability conditions can be identified with moduli spaces of framed quadratic differentials on Riemann surfaces with arbitrary order zeros and arbitrary higher order poles. A main tool in our proof is a comparison of two exchange graphs, obtained by tilting hearts in the quotient categories and by flipping mixed angulations associated with the quadratic differentials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源