论文标题
在广义chebyshev多项式的雅各布矩阵上
On the Jacobian Matrices of Generalized Chebyshev Polynomials
论文作者
论文摘要
在本文中,我们提供了一种实用方法,以计算与任意半神经相关的广义chebyshev多项式的雅各布矩阵。每个Jacobian矩阵的条目可以表示为具有整数系数的基础谎言代数的不可减至表示的线性组合。这些整数系数可以通过基本的Weyl腔室中的基本计算获得。
In this paper, we give a practical method to compute the Jacobian matrices of generalized Chebyshev polynomials associated to arbitrary semisimple Lie algebras. The entries of each Jacobian matrix can be expressed as a linear combination of characters of irreducible representations of the underlying Lie algebra with integer coefficients. These integer coefficients can be obtained by basic computations in the fundamental Weyl chamber.