论文标题
解决布劳尔问题的解决方案14
A solution to Brauer's Problem 14
论文作者
论文摘要
众所周知,有限组G的真实不可约字符的数量与G. Richard Brauer的真实共轭类别的数量一致,询问是否也可以用frobenius-schur指示器1的不可减至的字符数字来表示。我们表明,这可以通过计算$ g_1^2 \ ldots g_n^2 = 1 $的解决方案使用$ g_1,\ ldots,g_n \ in G $。
It is well known that the number of real irreducible characters of a finite group G coincides with the number of real conjugacy classes of G. Richard Brauer has asked if the number of irreducible characters with Frobenius-Schur indicator 1 can also be expressed in group theoretical terms. We show that this can done by counting solutions of $g_1^2\ldots g_n^2=1$ with $g_1,\ldots,g_n\in G$.