论文标题
Kerr谐振器中用相位连接光脉冲驱动的超短耗散拉曼孤子
Ultrashort dissipative Raman solitons in Kerr resonators driven with phase-coherent optical pulses
论文作者
论文摘要
在过去的十年中,被动,非线性光谐振器的外部驾驶已成为一种新的途径,以生成超短光脉冲和相应的宽带频率梳子。尽管此类系统中的脉冲形成动力学与在传统模式锁定激光器中表现出来的脉冲形成动力学差异很大,但两个传统上独特的范式之间的分界最近开始变得模糊,其中包括结合了外部驾驶和活跃媒体的混合系统的演示。在这里,我们在外部驱动的被动谐振器和激光器的界面上探索了一种新的脉冲产生途径。通过利用融合二氧化硅固有的非线性拉曼增益,我们通过通过相位连通的脉冲驱动器驱动由标准的,商业上商业上可用的光纤的谐振器来确定性生成,持续时间低于100 fs,其持续时间远低于100 fs。我们探索并解释了新的耗散拉曼孤子状态的物理学,确定了控制脉冲特征的缩放定律,并允许随意扩展产出重复速率而不会影响孤子持续时间。在我们的工作中探索的该方案使得通过单个商业上可用的光纤制成的谐振器(主动或被动)产生的最短脉冲,并且通过使用现有的分散工程化的硅胶微波炉来将其转移到芯片尺度格式中。
External driving of passive, nonlinear optical resonators has emerged over the past decade as a novel route for the generation of ultrashort optical pulses and corresponding broadband frequency combs. Whilst the pulse formation dynamics in such systems differ dramatically from those manifesting themselves in conventional mode-locked lasers, the demarcation between the two traditionally distinct paradigms has recently begun to blur, with demonstrations of hybrid systems incorporating both external driving and active media shown to offer specific advantages. Here we explore a new pathway for ultrashort pulse generation at the interface of externally-driven passive resonators and lasers. By leveraging the nonlinear Raman gain inherent to fused silica, we achieve deterministic generation of low-noise dissipative solitons with durations well below 100 fs via phase-coherent pulsed driving of resonators made of standard, commercially-available optical fibre. We explore and explain the physics of the new dissipative Raman soliton states, identifying scaling laws that govern the pulses' characteristics and that allow output repetition rates to be scaled at will without influencing the soliton duration. The scheme explored in our work enables the shortest ever pulses generated in resonators (active or passive) made from a single commercially-available optical fibre, and it has the potential to be transferred into a chip-scale format by using existing dispersion-engineered silica microresonators.