论文标题

手性一维渠道和局部状态的网络

Network of chiral one-dimensional channels and localized states emerging in a moiré system

论文作者

Park, Jeyong, Gresista, Lasse, Trebst, Simon, Rosch, Achim, Park, Jinhong

论文摘要

Moiré系统为工程带结构和异国相关阶段提供了高度可调的平台。在这里,我们从理论上研究了由光滑的Moiré静电电势的单层的模型,该模型由绝缘底物层引起。对于足够大的Moiré单位细胞,我们发现超流量带与手性一维(1D)通道的三角形网络共存。这些通道介导了局部模式与自旋,轨道和山谷自由度的有效相互作用。相互作用的形式反映了网络的手性和1D性质。我们研究了$ SU(4)$平均场理论,半古典蒙特卡洛模拟和$ su(4)$ Spin-Wave理论中的这种相互作用模型,重点是通过局部二维和chiral三个位点相互作用稳定的相应顺序。通过调谐栅极电压,一个人可以触发三种不同类型的顺序的奇特共存的非上流相:在一个山谷中的铁磁旋转顺序,另一个山谷中的非旋转手性旋转顺序,在另一个山谷中的非旋转式旋转顺序,以及120美元的$^\ circ $,在剩余的旋转和瓦利山谷中,自由度的自由度为120美元。量子和经典波动对观察到的阶段具有质量上不同的影响,例如,可以通过波动效应纯粹会产生有限的自旋护手。

Moiré systems provide a highly tunable platform for engineering band structures and exotic correlated phases. Here, we theoretically study a model for a single layer of graphene subject to a smooth moiré electrostatic potential, induced by an insulating substrate layer. For sufficiently large moiré unit cells, we find that ultra-flat bands coexist with a triangular network of chiral one-dimensional (1D) channels. These channels mediate an effective interaction between localized modes with spin-, orbital- and valley degrees of freedom emerging from the flat bands. The form of the interaction reflects the chiralilty and 1D nature of the network. We study this interacting model within an $SU(4)$ mean-field theory, semi-classical Monte-Carlo simulations, and an $SU(4)$ spin-wave theory, focusing on commensurate order stabilized by local two-site and chiral three-site interactions. By tuning a gate voltage, one can trigger a non-coplanar phase characterized by a peculiar coexistence of three different types of order: ferromagnetic spin order in one valley, non-coplanar chiral spin order in the other valley, and 120$^\circ$ order in the remaining spin and valley-mixed degrees of freedom. Quantum and classical fluctuations have qualitatively different effects on the observed phases and can, for example, create a finite spin-chirality purely via fluctuation effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源