论文标题
第一颗恒星形成的非理想磁流失动力学模拟:双极扩散的影响
Non-ideal magnetohydrodynamic simulations of the first star formation: the effect of ambipolar diffusion
论文作者
论文摘要
在当今的宇宙中,磁场在恒星形成中起着重要的作用,例如角动量传输和流出驾驶,这些驱动器控制着围墙盘形成/碎片以及恒星形成效率。尽管人们认为在早期的宇宙中只有一个弱的田地,但最近的理论研究发现,在重力崩溃期间,湍流的发电机可以产生强场。在这里,我们调查了云核的重力崩溃($ \ sim 10^{3} \ \ \ \ rm cm^{ - 3} $)直至原始的形成($ \ sim 10^{20} \ \ \ \ \ \ \ \ rm cm^{ - 3} $)由非思想磁氢型(MHD)组合(MHD) - 数字不合格(MHD) - 原始气体的影响。我们系统地研究具有或没有湍流的旋转云芯,并以不同强度的均匀场渗透。我们发现,AD可以通过发电机略微抑制场的生长,尤其是在小于牛仔裤尺度的密度范围$ 10^{10} -10^{14} \ rm cm cm^{ - 3} $的尺度上,而我们看不到AD对温度进化的效果,因为广告热速率总是比压缩速度更小。 AD的低效率使该领域的强度高达$ 10^{3} -10^{5} \ rm \ g $附近的原始原始恒星,即使在最初较弱的田地,也比当今的情况要强得多。磁场会在牛仔裤尺度上湍流扩大到等级水平时,磁场会影响流入运动,尽管受干扰的田地不会发出风。这可能表明,与其他过程(例如电离反馈)相比,发电机放大场对后期吸积阶段的动力学影响较小。
In the present-day universe, magnetic fields play such essential roles in star formation as angular momentum transport and outflow driving, which control circumstellar disc formation/fragmentation and also the star formation efficiency. While only a much weaker field has been believed to exist in the early universe, recent theoretical studies find that strong fields can be generated by turbulent dynamo during the gravitational collapse. Here, we investigate the gravitational collapse of a cloud core ($\sim 10^{3}\ \rm cm^{-3}$) up to protostar formation ($\sim 10^{20}\ \rm cm^{-3}$) by non-ideal magnetohydrodynamics (MHD) simulations considering ambipolar diffusion (AD), the dominant non-ideal effects in the primordial-gas. We systematically study rotating cloud cores either with or without turbulence and permeated with uniform fields of different strengths. We find that AD can slightly suppress the field growth by dynamo especially on scales smaller than the Jeans-scale at the density range $10^{10}-10^{14}\ \rm cm^{-3}$, while we could not see the AD effect on the temperature evolution, since the AD heating rate is always smaller than compression heating. The inefficiency of AD makes the field as strong as $10^{3}-10^{5} \rm\ G$ near the formed protostar, much stronger than in the present-day cases, even in cases with initially weak fields. The magnetic field affects the inflow motion when amplified to the equipartition level with turbulence on the Jeans-scale, although disturbed fields do not launch winds. This might suggest that dynamo amplified fields have smaller impact on the dynamics in the later accretion phase than other processes such as ionisation feedback.