论文标题
浮雕拓扑晶体沿晶界的分散淋巴结费物
Dispersive nodal fermions along grain boundaries in Floquet topological crystals
论文作者
论文摘要
驱动的量子材料通常具有新兴拓扑,否则静态晶体中没有。动态散装式对应关系是其最突出的例子。在这里我们表明,当floquet-bloch频段反转发生在有限的动量时($ {\ bf k}^{\ rm flq} _ {\ rm rm bf burgers burgers burgers burgers burgers burgers burgers burgers($)构成一系列位错的数组满足$ {\ bf k}^{\ rm flq} _ {\ rm inv} \ cdot {\ bf b} =π$(modulo $2π$)。无论驱动方案如何,都可以在Floquet Brillouin区的中心和/或边缘附近找到这种非隔离的无间隙状态。我们为二维驱动的时间逆转对称性破坏绝缘子展示了这些一般结果。讨论了在真实材料中托管这种动态拓扑色散带的有前途的实验平台。
Driven quantum materials often feature emergent topology, otherwise absent in static crystals. Dynamic bulk-boundary correspondence, encoded by nondissipative gapless modes residing near the Floquet zone center and/or boundaries, is its most prominent example. Here we show that topologically robust gapless dispersive modes appear along the grain boundaries, embedded in the interior of Floquet topological crystals, when the Floquet-Bloch band inversion occurring at a finite momentum (${\bf K}^{\rm Flq}_{\rm inv}$) and the Burgers vector (${\bf b}$) of the constituting array of dislocations satisfy ${\bf K}^{\rm Flq}_{\rm inv} \cdot {\bf b}=π$ (modulo $2 π$). Such nondissipative gapless states can be found near the center and/or edges of the Floquet Brillouin zone, irrespective of the drive protocol. We showcase these general outcomes for two-dimensional driven time-reversal symmetry breaking insulators. Promising experimental platforms hosting such dynamic topological dispersive bands in real materials are discussed.