论文标题

多价:交叉直肠英语NLP的框架

Multi-VALUE: A Framework for Cross-Dialectal English NLP

论文作者

Ziems, Caleb, Held, William, Yang, Jingfeng, Dhamala, Jwala, Gupta, Rahul, Yang, Diyi

论文摘要

由区域,社会和经济因素引起的方言差异导致许多语言技术使用者群体的绩效差异。包容性和公平的语言技术必须批判性方言不变性,这意味着性能在方言转移中保持不变。当前的系统通常没有这种理想,因为它们是通过单个方言设计和测试的:标准的美国英语(SAE)。我们引入了一套用于评估和实现英语方言不变性的资源。该资源称为Multi-Value,这是一个基于50个英语方言和189个独特语言特征的基于规则的翻译系统。多价值映射SAE到每个方言的合成形式。首先,我们使用该系统来压力测试问题答案,机器翻译和语义解析。压力测试揭示了非标准方言上领先模型的显着性能差异。其次,我们将该系统用作数据增强技术,以改善现有系统的方言鲁棒性。最后,我们与Chicano和Indian English的母语人士合作,发布了流行的COQA任务的新金标准变体。要执行转换代码,请运行模型检查点并下载合成和金标准的方言基准数据集,请参见http://value-nlp.org。

Dialect differences caused by regional, social, and economic factors cause performance discrepancies for many groups of language technology users. Inclusive and equitable language technology must critically be dialect invariant, meaning that performance remains constant over dialectal shifts. Current systems often fall short of this ideal since they are designed and tested on a single dialect: Standard American English (SAE). We introduce a suite of resources for evaluating and achieving English dialect invariance. The resource is called Multi-VALUE, a controllable rule-based translation system spanning 50 English dialects and 189 unique linguistic features. Multi-VALUE maps SAE to synthetic forms of each dialect. First, we use this system to stress tests question answering, machine translation, and semantic parsing. Stress tests reveal significant performance disparities for leading models on non-standard dialects. Second, we use this system as a data augmentation technique to improve the dialect robustness of existing systems. Finally, we partner with native speakers of Chicano and Indian English to release new gold-standard variants of the popular CoQA task. To execute the transformation code, run model checkpoints, and download both synthetic and gold-standard dialectal benchmark datasets, see http://value-nlp.org.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源