论文标题

对称远程horndeski重力

Symmetric Teleparallel Horndeski Gravity

论文作者

Bahamonde, Sebastian, Trenkler, Georg, Trombetta, Leonardo G., Yamaguchi, Masahide

论文摘要

Horndeski Gravity是最通用的标量调整理论,具有一个标量场,导致二阶Euler-Lagrange Field Equations的度量和标量场方程,它基于Riemannian几何形状。在本文中,我们在对称远程的几何形状中制定了Horndeski重力的模拟版本,该几何形状假设曲率(一般)和扭转都消失了,而重力仅与非型度有关。我们的设置要求不仅指标和标量字段的Euler-Lagrange方程,而且连接最多应是二阶。我们发现,该理论总是可以作为Riemannian Horndeski理论的总和,纯粹是触电的总和。由于非金属的性质,还有更多可能的方法来构建重力理论。在这方面,在某些假设中,我们发现了对称远程的Horndeski Gravity的最通用的$ k $ - essence扩展。我们还制定了一种新的理论,该理论包含作用于非赞成度的高阶衍生物,同时仍然尊重二阶条件,可以重新铸造为动力学重力编织的扩展。我们通过为模型介绍FLRW宇宙学方程来完成研究。

Horndeski gravity is the most general scalar-tensor theory with one scalar field leading to second-order Euler-Lagrange field equations for the metric and scalar field, and it is based on Riemannian geometry. In this paper, we formulate an analogue version of Horndeski gravity in a symmetric teleparallel geometry which assumes that both the curvature (general) and torsion are vanishing and gravity is only related to nonmetricity. Our setup requires that the Euler-Lagrange equations for not only metric and scalar field but also connection should be at most second order. We find that the theory can be always recast as a sum of the Riemannian Horndeski theory and new terms that are purely teleparallel. Due to the nature of nonmetricity, there are many more possible ways of constructing second-order theories of gravity. In this regard, up to some assumptions, we find the most general $k$-essence extension of Symmetric Teleparallel Horndeski gravity. We also formulate a novel theory containing higher-order derivatives acting on nonmetricity while still respecting the second-order conditions, which can be recast as an extension of Kinetic Gravity Braiding. We finish our study by presenting the FLRW cosmological equations for our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源