论文标题

高级涂抹技术的费米能量测定

Fermi energy determination for advanced smearing techniques

论文作者

Santos, Flaviano José dos, Marzari, Nicola

论文摘要

涂抹技术被广泛用于金属和磁性材料的第一原理计算中,在那里它们提高了布里鲁因区域采样的准确性并降低了水位不稳定性的影响。涂抹引入了虚拟的电子温度,使整体的不连续性平滑;因此,出现相应的虚拟熵术语,需要在总自由能功能中考虑。已经引入了先进的涂抹技术 - 例如甲法塞 - 帕克斯顿和冷涂抹 - 以确保系统的总自由能至少与涂抹温度保持独立至少至二阶。在这样做时,它们产生了非单调的职业函数(并且对于甲基甲版本,非阳性确定性),这可能导致化学势并未被唯一定义。我们详细探讨了这一缺点,并使用牛顿最小化方法引入了一种数值协议,该方法能够识别所需的费米能量。我们通过计算$ \ sim $ 20,000材料的费米能量来验证该方法,并将其与标准一分配方法的结果进行比较。顺便说一句,我们还强调了基于费米 - 迪拉克(Fermi-Dirac)或高斯(Gaussian)涂抹的传统方法实际上是相当于所有实际目的的,只要涂抹宽度被因子$ \ sim $ 2.565正确重新归一化。

Smearing techniques are widely used in first-principles calculations of metallic and magnetic materials, where they improve the accuracy of Brillouin zone sampling and lessen the impact of level-crossing instabilities. Smearing introduces a fictitious electronic temperature that smooths the discontinuities of the integrands; consequently, a corresponding fictitious entropic term arises, and needs to be considered in the total free energy functional. Advanced smearing techniques -- such as Methfessel-Paxton and cold smearing -- have been introduced to guarantee that the system's total free energy remains independent of the smearing temperature at least up to the second order. In doing so, they give rise to non-monotonic occupation functions (and, for Methfessel-Paxton, non-positive definite), which can result in the chemical potential not being uniquely defined. We explore this shortcoming in detail and introduce a numerical protocol utilizing Newton's minimization method that is able to identify the desired Fermi energy. We validate the method by calculating the Fermi energy of $\sim$20,000 materials and comparing it with the results of standard bisection approaches. In passing, we also highlight how traditional approaches, based on Fermi-Dirac or Gaussian smearing, are actually equivalent for all practical purposes, provided the smearing width is appropriately renormalized by a factor $\sim$2.565.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源