论文标题
黑洞背景和高旋转幅度的散射:第二部分
Scattering in Black Hole Backgrounds and Higher-Spin Amplitudes: Part II
论文作者
论文摘要
一方面,我们继续研究以适当的量子到古典限制的散射幅度,以散射大型高自旋颗粒和重力,另一方面,根据总体相对论,旋转黑洞的经典重力相互作用。我们首先在树级上为重力康普顿振幅构建一个ANSATZ,仅受位置,交叉对称性,单位性和与线性化 - Kerr 3点振幅的一致性的约束,以与Black Hole Spin中的所有顺序。然后,我们探讨了可以通过与经典的散射长波长重力波从一个精确的Kerr黑洞中散射的经典过程进行比较来识别独特的经典康普顿振幅的程度,该过程由Teukolsky方程的适当溶液确定。在自旋中最多可达第四阶,我们发现与树级康普顿振幅的先前猜想的指数形式完全一致。在较高的订单下,我们通过从物理($ a/gm <1 $)到类似粒子($ a/gm> 1 $)制度的分析延续来从Teukolsky振幅中提取树级贡献。直到旋转的第六阶,我们确定了振幅的唯一\ textit {保守{保守}部分,该部分对在黑洞地平线上的边界条件的选择以及分析延续中的分支选择都不敏感。振幅的其余部分是从分支选择中确定的一个整体符号,其符号在纯粹的ingo和纯粹的边界条件下在地平线上进行了翻转。在此过程中,我们与与EFT操作员和(旋转)部分振幅有关的大量旋转螺旋变量的新应用接触。
We continue to investigate correspondences between, on the one hand, scattering amplitudes for massive higher-spin particles and gravitons in appropriate quantum-to-classical limits, and on the other hand, classical gravitational interactions of spinning black holes according to general relativity. We first construct an ansatz for a gravitational Compton amplitude, at tree level, constrained only by locality, crossing symmetry, unitarity and consistency with the linearized-Kerr 3-point amplitude, to all orders in the black hole's spin. We then explore the extent to which a unique classical Compton amplitude can be identified by comparing with the results of the classical process of scattering long-wavelength gravitational waves off an exact Kerr black hole, determined by appropriate solutions of the Teukolsky equation. Up to fourth order in spin, we find complete agreement with a previously conjectured exponential form of the tree-level Compton amplitude. At higher orders, we extract tree-level contributions from the Teukolsky amplitude by an analytic continuation from a physical ($a/GM<1$) to a particle-like ($a/GM>1$) regime. Up to the sixth order in spin, we identify a unique \textit{conservative} part of the amplitude which is insensitive both to the choice of boundary conditions at the black hole horizon and to branch choices in the analytic continuation. The remainder of the amplitude is determined modulo an overall sign from a branch choice, with the sign flipping under exchanging purely ingoing and purely outgoing boundary conditions at the horizon. Along the way, we make contact with novel applications of massive spinor-helicity variables pertaining to their relation to EFT operators and (spinning) partial amplitudes.