论文标题
直接计算周期多项式和K3-fibred calabi-yau三倍的分类
Direct computation of period polynomials and classification of K3-fibred Calabi--Yau threefolds
论文作者
论文摘要
一个人可以分配给四维n = 2个超对称异质弦真空吸尘器一组分类不变式,包括晶格$λ_s$和矢量值值的模块化形式。某些分类不变性受到库仑分支单肌矩阵的条件的约束。我们以数字计算了某些等级1 $λ_s$的Meromorormormormormormormormormormormormormormormormormormormormormorphic cusp表格的多项式;然后,我们计算了单层矩阵,并提取了不变性构造的一般模式。我们得到的约束表明,我们研究的杂丝弦真空的大部分部分满足了双型IIA描述中非线性Sigma模型解释的必要条件。我们的计算也可用于识别实际六维流形的差异类别,这些分类无法通过K3-fibred calabi-yau三倍。
One can assign to four-dimensional N=2 supersymmetric Heterotic string vacua a set of classification invariants including a lattice $Λ_S$ and vector-valued modular forms. Some of the classification invariants are constrained by the condition that the Coulomb branch monodromy matrices should be integer-valued. We computed numerically the period polynomials of meromorphic cusp forms for some rank-1 $Λ_S$; we then computed the monodromy matrices and extracted general patterns of the constraints on the invariants. The constraints we got imply that a large fraction of the Heterotic string vacua we studied satisfy the necessary conditions for a non-linear sigma model interpretation in the dual Type IIA description. Our computation can also be used to identify diffeomorphism classes of real six-dimensional manifolds that cannot be realized by K3-fibred Calabi--Yau threefolds.