论文标题
Wald-Zoupas处方(软)异常
Wald-Zoupas prescription with (soft) anomalies
论文作者
论文摘要
我们表明,在存在异常和野外依赖性的差异性的情况下,引力电荷的Wald-Zoupas处方是有效的,但前提是以特定方式相互关联。允许异常的几何解释是暴露于BMS对称示例的情况:它们对应于电荷中的软项。我们确定Wald-Zoupas处方是否与改善的Noether电荷相吻合。必要的条件是一定的微分方程,当满足时,所产生的Noether电荷的边界拉格朗日通常包含一个非平凡的角项,可以从异常且纯度的条件中识别为先验。我们的结果解释了为什么尽管BMS转换的异常行为,但Wald-Zoupas处方有效,并且应该有助于将文献的不同分支在表面电荷上联系起来。
We show that the Wald-Zoupas prescription for gravitational charges is valid in the presence of anomalies and field-dependent diffeomorphism, but only if these are related to one another in a specific way. The geometric interpretation of the allowed anomalies is exposed looking at the example of BMS symmetries: They correspond to soft terms in the charges. We determine if the Wald-Zoupas prescription coincides with an improved Noether charge. The necessary condition is a certain differential equation, and when it is satisfied, the boundary Lagrangian of the resulting improved Noether charge contains in general a non-trivial corner term that can be identified a priori from a condition of anomaly-freeness. Our results explain why the Wald-Zoupas prescription works in spite of the anomalous behaviour of BMS transformations, and should be helpful to relate different branches of the literature on surface charges.