论文标题

有效的迭代任意高阶方法:低阶和高阶之间的自适应桥

Efficient iterative arbitrary high order methods: an adaptive bridge between low and high order

论文作者

Micalizzi, Lorenzo, Torlo, Davide, Boscheri, Walter

论文摘要

我们提出了一个新的范式,用于设计有效的P-自适应任意高阶方法。我们考虑任意高阶迭代方案,该方案在每次迭代时都会获得一个准确性,并修改它们以使其在特定迭代中获得的准确性与相同迭代的离散精度相匹配。除了计算优势外,新的修改方法还可以自然执行P-适应性,并在满足适当条件时停止迭代。此外,该修改很容易被包括在任意高阶迭代方案的现有实现中,并且如果原始方法可以实现,则不会破坏并行化的可能性。此处介绍了对双曲线偏微分方程(PDE)的任意导数(ADER)方法的应用。我们解释了如何通过将其重新铸造为递延校正方法(DEC)方法以及如何轻松修改它以获得更有效的公式,可以自然地集成P-Adaptiperitive和结构,如何将这种框架解释为一种任意的高阶迭代方案,以及如何轻松地修改它以获得更有效的公式,从而导致P-Adaptiperitive和结构保留特性。最后,针对可压缩气体动力学的经典基准测试了新型方法,以显示鲁棒性和计算效率。

We propose a new paradigm for designing efficient p-adaptive arbitrary high order methods. We consider arbitrary high order iterative schemes that gain one order of accuracy at each iteration and we modify them in order to match the accuracy achieved in a specific iteration with the discretization accuracy of the same iteration. Apart from the computational advantage, the new modified methods allow to naturally perform p-adaptivity, stopping the iterations when appropriate conditions are met. Moreover, the modification is very easy to be included in an existing implementation of an arbitrary high order iterative scheme and it does not ruin the possibility of parallelization, if this was achievable by the original method. An application to the Arbitrary DERivative (ADER) method for hyperbolic Partial Differential Equations (PDEs) is presented here. We explain how such framework can be interpreted as an arbitrary high order iterative scheme, by recasting it as a Deferred Correction (DeC) method, and how to easily modify it to obtain a more efficient formulation, in which a local a posteriori limiter can be naturally integrated leading to p-adaptivity and structure preserving properties. Finally, the novel approach is extensively tested against classical benchmarks for compressible gas dynamics to show the robustness and the computational efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源