论文标题

越野 - 卢卡斯多项式与卢卡斯序列之间的关系

Relationship between Vieta-Lucas polynomials and Lucas sequences

论文作者

Matsumoto, Futa

论文摘要

令$ w_n = w_n(p,q)$为数值序列,满足递归关系\ begin {equination*} w_ {n+2} = pw_ {n+1} -qw_n。 \ end {equation*}我们考虑两个特殊情况$(W_0,W_1)=(0,1)$和$(W_0,W_1)=(2,P)$,我们分别用$ u_n $和$ v_n $表示它们。 Vieta-lucas多项式$ v_n(x,1)$是$ n $的多项式。我们表明,一致性方程$ v_n(x,1)\等价c \ mod p $在且仅当$ u _ {(p-ε)/d}(c+2,c+2)$被$ p $划分时,$ p $,其中$ε\ in \ pm 1 \} $ c $ c $ c $ p $ n $ p $ n $ p $ n $ p $ n $ p $ n $ pp $ p $ p $ p p $ n $ c $ n和p n $ d = n $ n $ d = n $ d = n $ d = n $ d = n $ d = n $ d = n $ d = -

Let $w_n=w_n(P,Q)$ be numerical sequences which satisfy the recursion relation \begin{equation*} w_{n+2}=Pw_{n+1}-Qw_n. \end{equation*} We consider two special cases $(w_0,w_1)=(0,1)$ and $(w_0,w_1)=(2,P)$ and we denote them by $U_n$ and $V_n$ respectively. Vieta-Lucas polynomial $V_n(X,1)$ is the polynomial of degree $n$. We show that the congruence equation $V_n(X,1)\equiv C \mod p$ has a solution if and only if $U_{(p-ε)/d}(C+2,C+2)$ is divisible by $p$, where $ε\in\{\pm 1\}$ depends on $C$ and $p$, and $d=\gcd(n,p-ε)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源