论文标题
循环轨道的操作员代数
The operator algebra of cyclic orbifolds
论文作者
论文摘要
我们确定了共形环圆形的最大手性代数。就这个扩展的代数而言,如果母亲理论本身也是理性的和对角线的,则Orbifold是一种理性和对角线的综合场理论。根据该代数重新审视循环Orbifolds的操作员内容和操作员产品的扩展。融合规则和融合数是通过Verlinde公式计算的。这允许人们预测在给定的四点或无链操作员的四点函数中出现哪些共形块,这与一维关键系统中各种纠缠度量的计算相关。
We identify the maximal chiral algebra of conformal cyclic orbifolds. In terms of this extended algebra, the orbifold is a rational and diagonal conformal field theory, provided the mother theory itself is also rational and diagonal. The operator content and operator product expansion of the cyclic orbifolds are revisited in terms of this algebra. The fusion rules and fusion numbers are computed via the Verlinde formula. This allows one to predict which conformal blocks appear in a given four-point function of twisted or untwisted operators, which is relevant for the computation of various entanglement measures in one-dimensional critical systems.