论文标题

基于替代辅助水平的学习进化搜索,以优化增强的地热系统

Surrogate-assisted level-based learning evolutionary search for heat extraction optimization of enhanced geothermal system

论文作者

Chen, Guodong, Luo, Xin, Jiang, Chuanyin, Jiao, Jiu Jimmy

论文摘要

增强的地热系统对于提供可持续和长期的地热能源并减少碳排放至关重要。最佳的井控制方案可有效提取热量和提高热量清除效率,在地热发育中起着重要作用。但是,随着尺寸的增加,大多数现有优化算法的优化性能会恶化。为了解决这个问题,提出了一种新型的基于替代水平的学习进化搜索算法(SLLE),以优化增强的地热系统。 SLLE由基于分类器辅助的学习前屏幕部分和本地进化搜索部分组成。两部分的合作已经意识到在优化过程中探索和剥削之间的平衡。从设计空间进行迭代采样后,证明该算法的鲁棒性和有效性已得到显着改善。据我们所知,所提出的算法拥有最先进的模拟优化框架。已经在基准函数,二维断裂的储层和三维增强的地热系统上进行了比较实验。所提出的算法在所有选定的基准功能上都优于其他五种最先进的替代算法。与传统的进化算法和其他替代辅助算法相比,两个热量提取案例的结果还表明,SLLE可以实现出色的优化性能。这项工作为有效地提取增强的地热系统的地热提取奠定了坚实的基础,并阐明了能源开发领域中数据驱动优化的模型管理策略。

An enhanced geothermal system is essential to provide sustainable and long-term geothermal energy supplies and reduce carbon emissions. Optimal well-control scheme for effective heat extraction and improved heat sweep efficiency plays a significant role in geothermal development. However, the optimization performance of most existing optimization algorithms deteriorates as dimension increases. To solve this issue, a novel surrogate-assisted level-based learning evolutionary search algorithm (SLLES) is proposed for heat extraction optimization of enhanced geothermal system. SLLES consists of classifier-assisted level-based learning pre-screen part and local evolutionary search part. The cooperation of the two parts has realized the balance between the exploration and exploitation during the optimization process. After iteratively sampling from the design space, the robustness and effectiveness of the algorithm are proven to be improved significantly. To the best of our knowledge, the proposed algorithm holds state-of-the-art simulation-involved optimization framework. Comparative experiments have been conducted on benchmark functions, a two-dimensional fractured reservoir and a three-dimensional enhanced geothermal system. The proposed algorithm outperforms other five state-of-the-art surrogate-assisted algorithms on all selected benchmark functions. The results on the two heat extraction cases also demonstrate that SLLES can achieve superior optimization performance compared with traditional evolutionary algorithm and other surrogate-assisted algorithms. This work lays a solid basis for efficient geothermal extraction of enhanced geothermal system and sheds light on the model management strategies of data-driven optimization in the areas of energy exploitation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源