论文标题

大型物联网网络的跨链路通道预测

Cross-Link Channel Prediction for Massive IoT Networks

论文作者

Cho, Kun Woo, Cominelli, Marco, Gringoli, Francesco, Widmer, Joerg, Jamieson, Kyle

论文摘要

明天的大规模IoT传感器网络有望推动上行链路交通需求,尤其是在密集部署的地区。但是,为了满足这一需求,网络设计人员利用通常需要准确估算频道状态信息(CSI)的工具,这会导致高开销,从而减少网络吞吐量。此外,间接费用通常会随着客户量的数量而定,因此在如此庞大的IoT传感器网络中特别关注。虽然先前的工作已使用一个频带上的传输来预测同一链接上另一个频段的通道,但本文迈出了下一步,以减少CSI开销:预测附近但独特的链接的CSI。我们提出了交联通道预测(CLCP),该技术利用多视图表示学习来预测大量用户的通道响应,从而超过了以前的可能性。 CLCP的设计是高度实用的,可以利用从现有传输而不是专用的频道发声或额外的试点信号获得的通道估计。我们已经为两个不同的Wi-Fi版本(即802.11N和802.11AX)实施了CLCP,后者是未来物联网网络的领先候选人。我们在两个大规模的室内场景中评估CLCP,涉及视线和非线传输,最多144个不同的802.11AX用户。此外,我们通过四个不同的频道带宽从20 MHz到160 MHz来衡量其性能。我们的结果表明,CLCP比基线802.11ax提供了2倍的吞吐量增益,而现有跨波段预测算法的吞吐量增加了30%。

Tomorrow's massive-scale IoT sensor networks are poised to drive uplink traffic demand, especially in areas of dense deployment. To meet this demand, however, network designers leverage tools that often require accurate estimates of Channel State Information (CSI), which incurs a high overhead and thus reduces network throughput. Furthermore, the overhead generally scales with the number of clients, and so is of special concern in such massive IoT sensor networks. While prior work has used transmissions over one frequency band to predict the channel of another frequency band on the same link, this paper takes the next step in the effort to reduce CSI overhead: predict the CSI of a nearby but distinct link. We propose Cross-Link Channel Prediction (CLCP), a technique that leverages multi-view representation learning to predict the channel response of a large number of users, thereby reducing channel estimation overhead further than previously possible. CLCP's design is highly practical, exploiting channel estimates obtained from existing transmissions instead of dedicated channel sounding or extra pilot signals. We have implemented CLCP for two different Wi-Fi versions, namely 802.11n and 802.11ax, the latter being the leading candidate for future IoT networks. We evaluate CLCP in two large-scale indoor scenarios involving both line-of-sight and non-line-of-sight transmissions with up to 144 different 802.11ax users. Moreover, we measure its performance with four different channel bandwidths, from 20 MHz up to 160 MHz. Our results show that CLCP provides a 2x throughput gain over baseline 802.11ax and a 30 percent throughput gain over existing cross-band prediction algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源