论文标题
SBS:基于堆叠的语义分割框架,用于非常高的分辨率遥感图像
SBSS: Stacking-Based Semantic Segmentation Framework for Very High Resolution Remote Sensing Image
论文作者
论文摘要
对于许多应用程序而言,遥感图像的语义分割(VHR)遥感图像是一项基本任务。但是,这些VHR图像中对象尺度的较大变化对执行准确的语义分割构成了挑战。现有的语义分割网络能够在最多四个调整尺度的最多分析输入图像,但是考虑到对象尺度的多样性,这可能不足。因此,经常在实践中使用多量表(MS)测试时间数据增加来获得更准确的分割结果,从而同样使用在不同的调整量表下获得的分割结果。但是,在这项研究中发现,不同类别的对象具有其首选的调整量表,以进行更准确的语义分割。基于这种行为,提出了一个基于堆叠的语义分割(SBSS)框架,以通过学习此行为来改善分割结果,该行为包含一个可学习的误差校正模块(ECM),用于分割结果融合和计算复杂度控制的误差校正方案(ECS)。在本研究中提出和研究了两个EC,即ECS-MS和ECS-SS。 ECS-MS和ECS-SS所需的浮点操作(FLOP)分别与常用的MS测试和单尺度(SS)测试相似。在四个数据集(即CityScapes,Uavid,Loveda和Potsdam)上进行了广泛的实验表明,SBSS是一个有效且灵活的框架。使用ECS-MS时,它的精度比MS高,并且使用ECS-SS时具有与SS相似的精度相似。
Semantic segmentation of Very High Resolution (VHR) remote sensing images is a fundamental task for many applications. However, large variations in the scales of objects in those VHR images pose a challenge for performing accurate semantic segmentation. Existing semantic segmentation networks are able to analyse an input image at up to four resizing scales, but this may be insufficient given the diversity of object scales. Therefore, Multi Scale (MS) test-time data augmentation is often used in practice to obtain more accurate segmentation results, which makes equal use of the segmentation results obtained at the different resizing scales. However, it was found in this study that different classes of objects had their preferred resizing scale for more accurate semantic segmentation. Based on this behaviour, a Stacking-Based Semantic Segmentation (SBSS) framework is proposed to improve the segmentation results by learning this behaviour, which contains a learnable Error Correction Module (ECM) for segmentation result fusion and an Error Correction Scheme (ECS) for computational complexity control. Two ECS, i.e., ECS-MS and ECS-SS, are proposed and investigated in this study. The Floating-point operations (Flops) required for ECS-MS and ECS-SS are similar to the commonly used MS test and the Single-Scale (SS) test, respectively. Extensive experiments on four datasets (i.e., Cityscapes, UAVid, LoveDA and Potsdam) show that SBSS is an effective and flexible framework. It achieved higher accuracy than MS when using ECS-MS, and similar accuracy as SS with a quarter of the memory footprint when using ECS-SS.