论文标题
$ \ mathbb {q} _2 $的完全分支扩展的添加剂两次添加形式的溶解度两次
Solubility of Additive Forms of Twice Odd Degree over Totally Ramified Extensions of $\mathbb{Q}_2$
论文作者
论文摘要
我们证明,$ d = 2m $,$ m $奇数的添加形式在$ \ mathbb {q} _2 $的任何完全分支的扩展上,如果变量数量$ s $ satisifies $ s \ ge \ ge \ ge \ frac {d^2} {d^2} {4} {4} {4} + 3D + 3D + 3D + 1 $。
We prove that an additive form of degree $d=2m$, $m$ odd over any totally ramified extension of $\mathbb{Q}_2$ has a nontrivial zero if the number of variables $s$ satisifies $s \ge \frac{d^2}{4} + 3d + 1$.