论文标题

分析贝叶斯GLMM和具有线性不平等和形状约束的块状采样器的分析

Analysis of block slice samplers for Bayesian GLMMs and GAMs with linear inequality and shape constraints

论文作者

Ren, Benny, Morris, Jeffrey, Barnett, Ian

论文摘要

指数家族模型,广义线性模型(GLM),广义线性混合模型(GLMM)和广义添加剂模型(GAM)是统计中广泛使用的方法。但是,许多科学应用都需要在模型参数(例如形状和线性不平等约束)上放置限制。在统计数据中,有限的估计和参数推断仍然是一个普遍的问题,在这些统计数据中,许多方法都依赖于修改刚性大型样本理论假设进行推理。我们为贝叶斯GLMM和具有线性不等式和形状约束的bams的柔性切片吉布斯算法。我们证明我们的后样品遵循马尔可夫链中心限制定理(CLT),通过证明我们的马尔可夫链的均匀牙齿性和为我们的后验分布生成的矩创造函数的存在。我们使用CLT结果来得出关节带和多重性调整后的贝叶斯推断,以实现非参数功能效应。我们严格的CLT结果通过在有限样本设置中获得有效的参数来解决文献中的缺点。我们的算法和证明技术可适应无数重要的统计建模问题。我们将贝叶斯GAM应用于一个真实的数据分析示例,该示例涉及具有形状限制和平滑非参数效应儿童脑震荡恢复的比例赔率回归。我们获得了对单调非参数时间效应的多重推断,以阐明儿童的恢复趋势随时间的函数。

Exponential family models, generalized linear models (GLMs), generalized linear mixed models (GLMMs) and generalized additive models (GAMs) are widely used methods in statistics. However, many scientific applications necessitate constraints be placed on model parameters such as shape and linear inequality constraints. Constrained estimation and inference of parameters remains a pervasive problem in statistics where many methods rely on modifying rigid large sample theory assumptions for inference. We propose a flexible slice sampler Gibbs algorithm for Bayesian GLMMs and GAMs with linear inequality and shape constraints. We prove our posterior samples follow a Markov chain central limit theorem (CLT) by proving uniform ergodicity of our Markov chain and existence of the a moment generating function for our posterior distributions. We use our CLT results to derive joint bands and multiplicity adjusted Bayesian inference for nonparametric functional effects. Our rigorous CLT results address a shortcoming in the literature by obtaining valid estimation and inference on constrained parameters in finite sample settings. Our algorithmic and proof techniques are adaptable to a myriad of important statistical modeling problems. We apply our Bayesian GAM to a real data analysis example involving proportional odds regression for concussion recovery in children with shape constraints and smoothed nonparametric effects. We obtain multiplicity adjusted inference on monotonic nonparametric time effect to elucidate recovery trends in children as a function of time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源