论文标题

在控制协变量时

The finite sample performance of instrumental variable-based estimators of the Local Average Treatment Effect when controlling for covariates

论文作者

Bodory, Hugo, Huber, Martin, Lechner, Michael

论文摘要

本文在控制一组固定的协变量以评估局部平均治疗效果时,研究了一系列参数,半参数和非参数仪器变量估计器的有限样本性能。我们的仿真设计基于美国的经验劳动力市场数据,并且在几个方面有所不同,包括效应异质性,仪器选择性,仪器强度,结果分布和样本量。在考虑的估计器和模拟中,基于随机森林(以数据驱动方式控制协变量的机器学习者)的非参数估计在(基于自举)95%置信区间的平均覆盖率方面具有竞争力,而同样相对精确。非参数内核回归以及某些版本的半参数半径匹配的倾向得分,在协变量上对匹配的配对匹配,而反比概率加权也具有不错的覆盖范围,但比随机森林的方法更精确。就后期估计的平均均方根误差而言,内核回归的性能最佳,其次是随机森林方法,该方法的平均绝对偏置最低。

This paper investigates the finite sample performance of a range of parametric, semi-parametric, and non-parametric instrumental variable estimators when controlling for a fixed set of covariates to evaluate the local average treatment effect. Our simulation designs are based on empirical labor market data from the US and vary in several dimensions, including effect heterogeneity, instrument selectivity, instrument strength, outcome distribution, and sample size. Among the estimators and simulations considered, non-parametric estimation based on the random forest (a machine learner controlling for covariates in a data-driven way) performs competitive in terms of the average coverage rates of the (bootstrap-based) 95% confidence intervals, while also being relatively precise. Non-parametric kernel regression as well as certain versions of semi-parametric radius matching on the propensity score, pair matching on the covariates, and inverse probability weighting also have a decent coverage, but are less precise than the random forest-based method. In terms of the average root mean squared error of LATE estimation, kernel regression performs best, closely followed by the random forest method, which has the lowest average absolute bias.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源