论文标题
与随机专家的混合物进行分割中的多模式差异不确定性
Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture of Stochastic Experts
论文作者
论文摘要
为预测的分割提供校准的不确定性对于安全至关重要的应用至关重要。在这项工作中,我们专注于捕获分割中的数据链接不确定性(又称不良不确定性),通常是在输入图像中存在歧义时。由于在分割模棱两可的图像中具有高维的输出空间和潜在的多种模式,因此预测分割的良好校准的不确定性仍然具有挑战性。为了解决这个问题,我们提出了随机专家(MOSE)模型的新型混合物,其中每个专家网络估计了一种差异不确定性的独特模式,并且门控网络预测了在这些模式中分割的输入图像的概率。这产生了有效的两级不确定性表示。为了学习该模型,我们开发出类似沃斯坦的损失,直接最大程度地减少了摩根和地面真相注释之间的分布距离。损失可以轻松地整合传统的分割质量度量,并通过约束放松有效地优化。我们在LIDC-IDRI数据集和修改的多模式景观数据集上验证我们的方法。结果表明,我们的方法在所有指标上都实现了最先进或竞争性能。
Equipping predicted segmentation with calibrated uncertainty is essential for safety-critical applications. In this work, we focus on capturing the data-inherent uncertainty (aka aleatoric uncertainty) in segmentation, typically when ambiguities exist in input images. Due to the high-dimensional output space and potential multiple modes in segmenting ambiguous images, it remains challenging to predict well-calibrated uncertainty for segmentation. To tackle this problem, we propose a novel mixture of stochastic experts (MoSE) model, where each expert network estimates a distinct mode of the aleatoric uncertainty and a gating network predicts the probabilities of an input image being segmented in those modes. This yields an efficient two-level uncertainty representation. To learn the model, we develop a Wasserstein-like loss that directly minimizes the distribution distance between the MoSE and ground truth annotations. The loss can easily integrate traditional segmentation quality measures and be efficiently optimized via constraint relaxation. We validate our method on the LIDC-IDRI dataset and a modified multimodal Cityscapes dataset. Results demonstrate that our method achieves the state-of-the-art or competitive performance on all metrics.