论文标题
p^4上线性形式的6 x 6偏斜矩阵的模量空间,朝着中间的雅各布人观察到三倍的三倍。
Moduli spaces of 6 x 6 skew matrices of linear forms on P^4 with a view towards intermediate Jacobians of cubic threefolds
论文作者
论文摘要
众所周知,每个平滑立方三倍是p^4中线性形式的6 x 6偏压对称矩阵的pfaffian的零基因座。为了压缩给定立方体的这种PFAFFIAN表示的空间,并研究家庭的构造以及奇异或还原的立方体,因此自然而然地考虑PFAFFIAN代表的发病率在pfaffian代表的产物内的发病率对应率,可在P^4和Cubacics space和Cubics space和Cubics Space of Cubsics ske-Amperable-Skew-Mettrics 6 x 6矩阵中的发病率。在这里,我们在偏斜矩阵空间中的这种发病率对应关系的具体描述。
It is well known that every smooth cubic threefold is the zero locus of the Pfaffian of a 6 x 6 skew-symmetric matrix of linear forms in P^4. To compactify the space of such Pfaffian representations of a given cubic and to study the construction in families as well as for singular or reducible cubics, it is thus natural to consider the incidence correspondence of Pfaffian representations inside the product of the space of semistable skew-symmetric 6 x 6 matrices of linear forms in P^4 and the space of cubics. Here we describe concretely the irreducible component of this incidence correspondence dominating the space of skew matrices.