论文标题
用于磁化等离子体中的准线性扩散模型的保守盖金求解器
A conservative Galerkin solver for the quasilinear diffusion model in magnetized plasmas
论文作者
论文摘要
准线性理论描述了粒子与波之间与两个耦合方程之间的谐振相互作用:一个用于粒子概率密度函数的演变(\ textit {pdf}),另一个用于波光谱能密度(\ textit {sedit {sedit {sed}))。在本文中,我们提出了一种在三维动量空间和三维光谱空间中的准线性模型的保守盖金方案,具有圆柱形对称性。 我们通过“无条件的”构建了一种无条件保守的弱形式,并提出了一种保存无条件保护特性的离散化,我们的意思是,保护措施独立于奇异过渡概率。离散的操作员,结合一致的正交规则,将严格保护所有保护法。我们提出的技术非常笼统:它适用于相对论和非忠实的系统,磁化和未磁化的等离子体,甚至对于时间依赖时间的分散关系问题。 我们通过连续基础函数代表粒子\ textIt {pdf},并为Wave \ textit {sed}使用不连续的基础函数,从而实现了阳性保留技术的应用。最初是为计算机图形设计的行进单纯形算法,用于在共振歧管上的数值集成。我们引入了半平时的时间离散化,并讨论稳定性条件。此外,我们提出了具有“尾巴上的颠簸”初始配置的数值示例,表明粒子波相互作用会导致对粒子\ textit {pdf}的强烈各向异性扩散效应。
The quasilinear theory describes the resonant interaction between particles and waves with two coupled equations: one for the evolution of the particle probability density function(\textit{pdf}), the other for the wave spectral energy density(\textit{sed}). In this paper, we propose a conservative Galerkin scheme for the quasilinear model in three-dimensional momentum space and three-dimensional spectral space, with cylindrical symmetry. We construct an unconditionally conservative weak form, and propose a discretization that preserves the unconditional conservation property, by "unconditional" we mean that conservation is independent of the singular transition probability. The discrete operators, combined with a consistent quadrature rule, will preserve all the conservation laws rigorously. The technique we propose is quite general: it works for both relativistic and non-relativistic systems, for both magnetized and unmagnetized plasmas, and even for problems with time-dependent dispersion relations. We represent the particle \textit{pdf} by continuous basis functions, and use discontinuous basis functions for the wave \textit{sed}, thus enabling the application of a positivity-preserving technique. The marching simplex algorithm, which was initially designed for computer graphics, is adopted for numerical integration on the resonance manifold. We introduce a semi-implicit time discretization, and discuss the stability condition. In addition, we present numerical examples with a "bump on tail" initial configuration, showing that the particle-wave interaction results in a strong anisotropic diffusion effect on the particle \textit{pdf}.