论文标题
识别双层石墨烯双重量子点中的Pauli封锁制度
Identifying Pauli blockade regimes in bilayer graphene double quantum dots
论文作者
论文摘要
最近对2D材料量子点平台中电流阻滞的实验观察为旋转和山谷量处理开辟了新的途径。在实验结果的激励下,我们构建了一个模型,该模型捕获了库仑相互作用,互换隧道,Zeeman分裂和内在的自旋轨道耦合的微妙相互作用,以模拟Pauli的阻塞。分析广义汉密尔顿的相关fock-sppaces,再加上密度矩阵主方程技术以在整个设置上运输,我们确定了通用的封锁机制类别。最重要的是,与广泛认可的情况相反,我们表明,负责保利 - 遮盖的导致和阻止状态是所有自由度的耦合效应的结果,并且不能仅使用旋转或山谷伪旋转来解释。然后,我们从数值上预测可能发生保利的封锁的机制,为此,我们根据实际的实验数据验证了模型,并建议我们的模型可用于生成数据集,以实现不同参数值的数据集,其最终目标是在机器学习算法上训练的最终目标。我们的工作为基于2D材料平台的DQD上的旋转状态和山谷状态的单次读数进行了可预测的理论辅助实验实现提供了一个有利的平台。
Recent experimental observations of current blockades in 2-D material quantum-dot platforms have opened new avenues for spin and valley-qubit processing. Motivated by experimental results, we construct a model capturing the delicate interplay of Coulomb interactions, inter-dot tunneling, Zeeman splittings, and intrinsic spin-orbit coupling in a double quantum dot structure to simulate the Pauli blockades. Analyzing the relevant Fock-subspaces of the generalized Hamiltonian, coupled with the density matrix master equation technique for transport across the setup, we identify the generic class of blockade mechanisms. Most importantly, and contrary to what is widely recognized, we show that conducting and blocking states responsible for the Pauli-blockades are a result of the coupled effect of all degrees of freedom and cannot be explained using the spin or the valley pseudo-spin only. We then numerically predict the regimes where Pauli blockades might occur, and, to this end, we verify our model against actual experimental data and propose that our model can be used to generate data sets for different values of parameters with the ultimate goal of training on a machine learning algorithm. Our work provides an enabling platform for a predictable theory-aided experimental realization of single-shot readout of the spin and valley states on DQDs based on 2D-material platforms.