论文标题

DialogQae:n-to-n问题答案对从客户服务聊天室提取提取

DialogQAE: N-to-N Question Answer Pair Extraction from Customer Service Chatlog

论文作者

Zheng, Xin, Liu, Tianyu, Meng, Haoran, Wang, Xu, Jiang, Yufan, Rao, Mengliang, Lin, Binghuai, Sui, Zhifang, Cao, Yunbo

论文摘要

从野外收获问答(QA)对聊天室的收集对是一种有效的方法,可以在冷启动或连续集成方案中丰富客户服务聊天机器人的知识库。先前的工作试图从不断增长的客户服务聊天室中获得1到1 QA对,这无法整合来自对话框上下文中的不完整话语以进行复合质量检查。在本文中,我们提出了n-to-n QA提取任务,其中衍生的问题和相应的答案可能会在不同的话语中分开。我们介绍了一套具有端到端和两阶段变体的基于生成/歧视标记的方法,这些方法在5个客户服务数据集上表现良好,并且首次为N-to-N DialoGQAE设置了带有说服和会话级别评估指标的基准测试。深入研究提取的QA对,我们发现质量检查对之间和内部之间的关系可以是分析对话结构的指标,例如信息寻求,澄清,驳船和阐述。我们还表明,所提出的模型可以适应不同的领域和语言,并降低现实世界产品对话平台中知识积累的劳动成本。

Harvesting question-answer (QA) pairs from customer service chatlog in the wild is an efficient way to enrich the knowledge base for customer service chatbots in the cold start or continuous integration scenarios. Prior work attempts to obtain 1-to-1 QA pairs from growing customer service chatlog, which fails to integrate the incomplete utterances from the dialog context for composite QA retrieval. In this paper, we propose N-to-N QA extraction task in which the derived questions and corresponding answers might be separated across different utterances. We introduce a suite of generative/discriminative tagging based methods with end-to-end and two-stage variants that perform well on 5 customer service datasets and for the first time setup a benchmark for N-to-N DialogQAE with utterance and session level evaluation metrics. With a deep dive into extracted QA pairs, we find that the relations between and inside the QA pairs can be indicators to analyze the dialogue structure, e.g. information seeking, clarification, barge-in and elaboration. We also show that the proposed models can adapt to different domains and languages, and reduce the labor cost of knowledge accumulation in the real-world product dialogue platform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源