论文标题
在基本属性品种的基本群体上
On the fundamental groups of subelliptic varieties
论文作者
论文摘要
我们表明,任何光滑的下次次次次次次群的基本组都是有限的。此外,还可以证明,每个有限群体都可以实现为平滑的下层次品种的基本群体。结果,因此,当且仅当$ n> 1 $时,就存在于$ n $ sphere的平滑下次次次次数同型。该结果可以被视为对OKA歧管同质类型的Gromov问题代数版本的负面答案。
We show that the fundamental group of any smooth subelliptic variety is finite. Moreover, it is also proved that every finite group can be realized as the fundamental group of a smooth subelliptic variety. As a consequence, it follows that there exists a smooth subelliptic variety homotopy equivalent to the $n$-sphere if and only if $n>1$. This result can be considered as a negative answer to the algebraic version of Gromov's problem on the homotopy types of Oka manifolds.