论文标题

完全复杂的完全卷积的全卷积多功能融合网络(FC2MFN),用于构建INSAR图像的分割

Fully Complex-valued Fully Convolutional Multi-feature Fusion Network (FC2MFN) for Building Segmentation of InSAR images

论文作者

Sikdar, Aniruddh, Udupa, Sumanth, Sundaram, Suresh, Sundararajan, Narasimhan

论文摘要

在高分辨率Insar图像中建造细分是一项艰巨的任务,可用于大规模监视。尽管复杂值的深度学习网络的性能优于其复杂价值SAR数据的实值对应物,但在整个网络中并未保留阶段信息,这会导致信息丢失。本文提出了一个完全复杂的,完全卷积的多功能融合网络(FC2MFN),用于使用一种新颖的,完全复杂的知识学习方案在Insar图像上构建语义分割。该网络学习多尺度功能,执行多功能融合,并具有复杂的价值输出。对于复合价值的InsAR数据的特殊性,提出了一个新的复杂价值的池化层,该层次比较了考虑其大小和相位的复数数字。这有助于网络即使通过合并层也保留了相位信息。模拟INSAR数据集的实验结果表明,与其他最新方法相比,FC2MFN在分割性能和模型复杂性方面取得了更好的结果。

Building segmentation in high-resolution InSAR images is a challenging task that can be useful for large-scale surveillance. Although complex-valued deep learning networks perform better than their real-valued counterparts for complex-valued SAR data, phase information is not retained throughout the network, which causes a loss of information. This paper proposes a Fully Complex-valued, Fully Convolutional Multi-feature Fusion Network(FC2MFN) for building semantic segmentation on InSAR images using a novel, fully complex-valued learning scheme. The network learns multi-scale features, performs multi-feature fusion, and has a complex-valued output. For the particularity of complex-valued InSAR data, a new complex-valued pooling layer is proposed that compares complex numbers considering their magnitude and phase. This helps the network retain the phase information even through the pooling layer. Experimental results on the simulated InSAR dataset show that FC2MFN achieves better results compared to other state-of-the-art methods in terms of segmentation performance and model complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源