论文标题
CAT(0)较高等级的空间
CAT(0) spaces of higher rank I
论文作者
论文摘要
猫(0)空间的排名至少为$ n $,如果每个测量中的每个地理位置都在$ n $ flat中。鲍尔曼(Ballmann)的较高排名刚度猜想预测,与几何组动作的猫(0)排名至少$ 2 $是刚性的 - 静脉内的对称空间,欧几里得建筑物或分配为度量产品。本文是Ballmann的猜想激励的系列中的第一篇。在这里,我们证明,如果包含定期的$ n $ -flat,其cat(0)排名至少$ n \ geq 2 $是刚性的,并且其山雀边界具有尺寸$(n-1)$。这不需要几何组动作。结果基本上依赖于不绑定平坦半空间的公寓的研究 - 所谓的摩尔斯公寓。我们表明,定期摩尔斯$ n $ -flat $ f $的山雀边界$ \ partial_t f $包含一个常规点 - 一个完全包含在$ \ partial_t f $中的山雀 - 邻里的点。更确切地说,我们表明,$ \ partial_t f $中的单数点集可以被有限的正面圆形圆形覆盖。
A CAT(0) space has rank at least $n$ if every geodesic lies in an $n$-flat. Ballmann's Higher Rank Rigidity Conjecture predicts that a CAT(0) space of rank at least $2$ with a geometric group action is rigid -- isometric to a Riemannian symmetric space, a Euclidean building, or splits as a metric product. This paper is the first in a series motivated by Ballmann's conjecture. Here we prove that a CAT(0) space of rank at least $n\geq 2$ is rigid if it contains a periodic $n$-flat and its Tits boundary has dimension $(n-1)$. This does not require a geometric group action. The result relies essentially on the study of flats which do not bound flat half-spaces -- so-called Morse flats. We show that the Tits boundary $\partial_T F$ of a periodic Morse $n$-flat $F$ contains a regular point -- a point with a Tits-neighborhood entirely contained in $\partial_T F$. More precisely, we show that the set of singular points in $\partial_T F$ can be covered by finitely many round spheres of positive codimension.