论文标题

Optofluidic运输和颗粒捕获使用全dilectric Quasi-BIC跨表面

Optofluidic transport and particle trapping using an all-dielectric quasi-BIC metasurface

论文作者

Yang, Sen, Ndukaife, Justus C.

论文摘要

通过纳米级的光操纵流体一直是实验室芯片应用程序的长期目标。由于金属的内在损失增强了光吸收,因此已证明等离子加热可以控制微流体动力学。介电介质(金属的对应物)用于避免由于其可忽略的光吸收而避免不希望的热效应。在这里,我们报告了一种创新的光氟烯系统,该系统利用了准BIC驱动的全dielectric metasurface,以实现对温度和流体运动的纳米级控制。我们的实验表明,悬浮的颗粒降至200纳米可以迅速聚集到照明的跨表面中心,每秒几十微米,并展示了毫米尺度的粒子传输的速度。与非谐波情况相比,准BIC共振的强电磁场增强可以促进流速至3倍。我们还实验研究了粒子聚集的动力学相对于激光波长和功率。提出了一个物理模型,以阐明现象,并将表面活性剂添加到粒子胶体中以验证模型。我们的研究表明,最近出现的全丝型热射流学在处理功能性液体中的应用,并在利用非质子纳米光子学来操纵微流体动力学方面打开了新的边界。此外,Optofluidics和High-Q All-Dilectric纳米结构的协同作用在高敏感性生物传感应用中具有巨大的潜力。

Manipulating fluids by light at the nanoscale has been a long-sought-after goal for lab-on-a-chip applications. Plasmonic heating has been demonstrated to control microfluidic dynamics due to the enhanced and confined light absorption from the intrinsic losses of metals. Dielectrics, counterpart of metals, is used to avoid undesired thermal effects due to its negligible light absorption. Here, we report an innovative optofluidic system that leverages a quasi-BIC driven all-dielectric metasurface to achieve nanoscale control of temperature and fluid motion. Our experiments show that suspended particles down to 200 nanometers can be rapidly aggregated to the center of the illuminated metasurface with a velocity of tens of micrometers per second, and up to millimeter-scale particle transport is demonstrated. The strong electromagnetic field enhancement of the quasi-BIC resonance can facilitate increasing the flow velocity up to 3-times compared with the off-resonant situation. We also experimentally investigate the dynamics of particle aggregation with respect to laser wavelength and power. A physical model is presented to elucidate the phenomena and surfactants are added to the particle colloid to validate the model. Our study demonstrates the application of the recently emerged all-dielectric thermonanophotonics in dealing with functional liquids and opens new frontiers in harnessing non-plasmonic nanophotonics to manipulate microfluidic dynamics. Moreover, the synergistic effects of optofluidics and high-Q all-dielectric nanostructures can hold enormous potential in high-sensitivity biosensing applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源