论文标题

通过微调预训练的图像文本编码器,可以显着改善零拍X射线病理学分类

Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders

论文作者

Jang, Jongseong, Kyung, Daeun, Kim, Seung Hwan, Lee, Honglak, Bae, Kyunghoon, Choi, Edward

论文摘要

深层神经网络越来越多地用于医学成像中,例如病理分类等任务,但由于缺乏高质量,专家标记的培训数据,它们面临挑战。最近的努力利用了预先训练的对比图形模型,例如剪辑,通过用胸部X射线图像对模型进行微调以及对零摄像病理学分类的相应报告,从而使其适应医疗用途,从而消除了对病理特异性注释的需求。但是,大多数研究继续使用与一般领域相同的对比学习目标,从而忽略了医学图像报告对的多标记性质。在本文中,我们提出了一种新的微调策略,其中包括积极的损失松弛和随机句子采样。我们旨在在不依赖外部知识的情况下提高零摄像病理分类的性能。我们的方法可以应用于任何预训练的对比图像文本编码器,并在没有进一步培训的情况下轻松传输到室外数据集中,因为它不使用外部数据。我们的方法一致地改善了四个胸部X射线数据集和三个预训练的模型的总体零摄像病病理分类,平均宏观AUROC增加了4.3%。此外,对于CHEXPERT数据集中的五种竞争病理学,我们的方法优于最先进的和边缘的放射科医生,以零射击分类超过了董事会认证的放射科医生。

Deep neural networks are increasingly used in medical imaging for tasks such as pathological classification, but they face challenges due to the scarcity of high-quality, expert-labeled training data. Recent efforts have utilized pre-trained contrastive image-text models like CLIP, adapting them for medical use by fine-tuning the model with chest X-ray images and corresponding reports for zero-shot pathology classification, thus eliminating the need for pathology-specific annotations. However, most studies continue to use the same contrastive learning objectives as in the general domain, overlooking the multi-labeled nature of medical image-report pairs. In this paper, we propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling. We aim to improve the performance of zero-shot pathology classification without relying on external knowledge. Our method can be applied to any pre-trained contrastive image-text encoder and easily transferred to out-of-domain datasets without further training, as it does not use external data. Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models, with an average macro AUROC increase of 4.3%. Additionally, our method outperforms the state-of-the-art and marginally surpasses board-certified radiologists in zero-shot classification for the five competition pathologies in the CheXpert dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源