论文标题

星系形态的自动分类:基于UML-DATASET的旋转监督机器学习方法

Automatic Classification of Galaxy Morphology: a rotationally invariant supervised machine learning method based on the UML-dataset

论文作者

Fang, G. W., Ba, S., Gu, Y. Z., Lin, Z. S., Hou, Y. J., Qin, C. X., Zhou, C. C., Xu, J., Dai, Y., Song, J., Kong, X.

论文摘要

对于下一代望远镜产生的大量数据,银河形态的分类是一项具有挑战性但有意义的任务。通过引入自适应极地坐标转换,我们开发了一种旋转不变的监督机器学习(SML)方法,该方法在旋转星系图像时确保一致的分类,始终需要在身体上满足但很难实现算法。与传统的数据增强方法相比,通过在训练集中包括其他旋转图像,自适应极地坐标转换被证明是改善SML方法鲁棒性的有效方法。在以前的工作中,我们通过开发的无监督机器学习(UML)方法生成了具有良好分类形态的星系目录。通过使用此UML-DATASET作为训练集,我们将使用新方法将星系分类为五类(不可分类,不规则,晚型磁盘,早期型磁盘和球形)。通常,从不规则到球体的顺序进行形态学分类的结果与其他星系特性的预期趋势(包括Sérsic指数,有效的半径,非参数统计量和颜色)非常吻合。因此,我们证明了旋转不变的SML方法与先前开发的UML方法一起完成了星系形态的自动分类的整个任务。

Classification of galaxy morphology is a challenging but meaningful task for the enormous amount of data produced by the next-generation telescope. By introducing the adaptive polar coordinate transformation, we develop a rotationally invariant supervised machine learning (SML) method that ensures consistent classifications when rotating galaxy images, which is always required to be satisfied physically but difficult to achieve algorithmically. The adaptive polar coordinate transformation, compared with the conventional method of data augmentation by including additional rotated images in the training set, is proved to be an effective and efficient method in improving the robustness of the SML methods. In the previous work, we generated a catalog of galaxies with well-classified morphologies via our developed unsupervised machine learning (UML) method. By using this UML-dataset as the training set, we apply the new method to classify galaxies into five categories (unclassifiable, irregulars, late-type disks, early-type disks, and spheroids). In general, the result of our morphological classifications following the sequence from irregulars to spheroids agrees well with the expected trends of other galaxy properties, including Sérsic indices, effective radii, nonparametric statistics, and colors. Thus, we demonstrate that the rotationally invariant SML method, together with the previously developed UML method, completes the entire task of automatic classification of galaxy morphology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源