论文标题
自主驾驶中状态空间模型学习的基于粒子的得分估计
Particle-Based Score Estimation for State Space Model Learning in Autonomous Driving
论文作者
论文摘要
对于机器人必须与其他移动对象进行交互的机器人应用,多对象状态估计是一个基本问题。通常,其他对象的相关状态特征无法直接观察,而必须从观察结果中推断出来。粒子过滤可以在近似过渡和观察模型给定粒子过滤。但是,这些模型通常是未知的先验,因为观察结果共同带有过渡和观察噪声,因此产生了困难的参数估计问题。在这项工作中,我们考虑使用粒子方法学习最大的样本参数。解决此问题的最新方法通常会在粒子滤清器中通过时间区分,这需要解决方向性的重新采样步骤,从而产生有偏差或高方差梯度估计值。相比之下,我们利用Fisher的身份来获得基于粒子的得分函数(对数可能性的梯度)的基于粒子的近似值,该得分函数得出较低的方差估计值,而仅需通过过渡和观察模型才需要逐步差异化。我们将我们的方法应用于从自动驾驶汽车(AV)收集的真实数据中,并表明它比现有技术学习更好的模型,并且在培训方面更稳定,从而产生了一种有效的更平滑的,以跟踪AV周围的车辆轨迹。
Multi-object state estimation is a fundamental problem for robotic applications where a robot must interact with other moving objects. Typically, other objects' relevant state features are not directly observable, and must instead be inferred from observations. Particle filtering can perform such inference given approximate transition and observation models. However, these models are often unknown a priori, yielding a difficult parameter estimation problem since observations jointly carry transition and observation noise. In this work, we consider learning maximum-likelihood parameters using particle methods. Recent methods addressing this problem typically differentiate through time in a particle filter, which requires workarounds to the non-differentiable resampling step, that yield biased or high variance gradient estimates. By contrast, we exploit Fisher's identity to obtain a particle-based approximation of the score function (the gradient of the log likelihood) that yields a low variance estimate while only requiring stepwise differentiation through the transition and observation models. We apply our method to real data collected from autonomous vehicles (AVs) and show that it learns better models than existing techniques and is more stable in training, yielding an effective smoother for tracking the trajectories of vehicles around an AV.