论文标题
零属的分析Langlands计划的乘法内核
Multiplication Kernels for the Analytic Langlands Program in Genus Zero
论文作者
论文摘要
我们提供了Gaiotto Arxiv:2110.02255的最新结果的明确证明,该结果为所谓的“乘法内核” $ k_3(x,y,y,z; t)提供了明确的公式,与Hecke Operators和Gaudin操作员相互交织了三组$ k____________________3的情况。 Langlands计划ARXIV属:1908.09677,ARXIV:2103.01509,ARXIV:2106.05243,我们还讨论了内核$ k_3 $如何与分析Langlands计划中通常考虑的其他对象有关。
We provide an explicit proof of a recent result of Gaiotto arXiv:2110.02255 which gives an explicit formula for a so-called "multiplication kernel'' $K_3(x, y, z; t)$ intertwining the action of Hecke operators and Gaudin operators in three sets of variables. This function $K_3$ arises naturally in the context of the analytic formulation of the geometric Langlands program in the genus-zero case arXiv:1908.09677, arXiv:2103.01509, arXiv:2106.05243. We also discuss how the kernel $K_3$ relates to other objects typically considered in the analytic Langlands program.