论文标题

通过语义多宇宙通信启用无线元元

Enabling the Wireless Metaverse via Semantic Multiverse Communication

论文作者

Park, Jihong, Choi, Jinho, Kim, Seong-Lyun, Bennis, Mehdi

论文摘要

无线网络上的元视频是第六代(6G)无线系统的新兴用例,它在其多模式数据传输方面提出了前所未有的挑战,并具有严格的延迟和可靠性要求。为了实现这一无线元视频,在本文中,我们提出了一个新颖的语义通信(SC)框架,通过将荟萃分析分解为人/机器特定于特定于人类的语义多元素(SMS)。一个存储在每个代理的SM包括一个语义编码器和一个发电机,利用了生成人工智能(AI)的最新进展。为了提高通信效率,编码器学习了多模式数据的语义表示(SRS),而发电机则学习如何操纵它们以在元视频中进行本地渲染场景和交互。由于这些学到的SMS偏向本地环境,因此它们的成功取决于在背景中同步异质SMS,同时在前景中进行SR,将无线元问题转变为语义多宇宙通信(SMC)的问题。基于此SMC架构,我们提出了几种有希望的算法和分析工具,用于建模和设计SMC,从分布式学习和多代理增强学习(MARL)到信号游戏和符号AI。

Metaverse over wireless networks is an emerging use case of the sixth generation (6G) wireless systems, posing unprecedented challenges in terms of its multi-modal data transmissions with stringent latency and reliability requirements. Towards enabling this wireless metaverse, in this article we propose a novel semantic communication (SC) framework by decomposing the metaverse into human/machine agent-specific semantic multiverses (SMs). An SM stored at each agent comprises a semantic encoder and a generator, leveraging recent advances in generative artificial intelligence (AI). To improve communication efficiency, the encoder learns the semantic representations (SRs) of multi-modal data, while the generator learns how to manipulate them for locally rendering scenes and interactions in the metaverse. Since these learned SMs are biased towards local environments, their success hinges on synchronizing heterogeneous SMs in the background while communicating SRs in the foreground, turning the wireless metaverse problem into the problem of semantic multiverse communication (SMC). Based on this SMC architecture, we propose several promising algorithmic and analytic tools for modeling and designing SMC, ranging from distributed learning and multi-agent reinforcement learning (MARL) to signaling games and symbolic AI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源