论文标题
Hyperion:恒星的起源是宽阔的空间望远镜,用于高分辨率光谱范围
Hyperion: The origin of the stars A far-UV space telescope for high-resolution spectroscopy over wide fields
论文作者
论文摘要
我们提出了Hyperion,这是最近向2021年12月的NASA Medium Explorer宣布机会的任务概念。 Hyperion探讨了银河系附近的恒星形成区域中分子云和行星形成磁盘的形成和破坏。它使用荧光分子氢的长缝,高分辨率的发射光谱,这是一种强大的远硫酸盐(FUV)诊断。分子氢(H2)是宇宙中最丰富的分子,也是恒星和行星形成的关键成分,但通常不会直接观察到它的对称原子结构和缺乏偶极矩,意味着在可见的波长处没有光谱线,在红外线中没有光谱线。 Hyperion使用分子氢的FUV发射线财富来实现三个科学目标:(1)确定恒星形成与分子云边界处的分子氢形成和破坏的关系; (2)确定巨大的恒星反馈分散分子云的速度和通过哪种过程来确定; (3)确定驱动年轻太阳能分子星周围行星磁盘的演变的机制。 Hyperion使用直接,高效,单渠道仪器设计进行了这项科学。 Hyperion的仪器由48厘米的主镜组成,其f/5焦距。光谱仪具有两种模式,均覆盖138.5-161.5 nm带通路。低分辨率模式的频谱分辨率为10,000,缝隙长度为65个arcmin,而高分辨率模式在5 Armin的缝隙长度上的光谱分辨率为R> 50,000。 Hyperion占据了2周长的高地,月共振的苔丝样轨道,每轨道进行了2周的计划观测,并有时间进行下行链接和校准。 Hyperion被审查为I类,这是可能的最高评级,但没有选择。
We present Hyperion, a mission concept recently proposed to the December 2021 NASA Medium Explorer announcement of opportunity. Hyperion explores the formation and destruction of molecular clouds and planet-forming disks in nearby star-forming regions of the Milky Way. It does this using long-slit, high-resolution spectroscopy of emission from fluorescing molecular hydrogen, which is a powerful far-ultraviolet (FUV) diagnostic. Molecular hydrogen (H2) is the most abundant molecule in the universe and a key ingredient for star and planet formation, but is typically not observed directly because its symmetric atomic structure and lack of a dipole moment mean there are no spectral lines at visible wavelengths and few in the infrared. Hyperion uses molecular hydrogen's wealth of FUV emission lines to achieve three science objectives: (1) determining how star formation is related to molecular hydrogen formation and destruction at the boundaries of molecular clouds; (2) determining how quickly and by what process massive star feedback disperses molecular clouds; and (3) determining the mechanism driving the evolution of planet-forming disks around young solar-analog stars. Hyperion conducts this science using a straightforward, highly-efficient, single-channel instrument design. Hyperion's instrument consists of a 48 cm primary mirror, with an f/5 focal ratio. The spectrometer has two modes, both covering 138.5-161.5 nm bandpasses. A low resolution mode has a spectral resolution of R>10,000 with a slit length of 65 arcmin, while the high resolution mode has a spectral resolution of R>50,000 over a slit length of 5 armin. Hyperion occupies a 2 week long, high-earth, Lunar resonance TESS-like orbit, and conducts 2 weeks of planned observations per orbit, with time for downlinks and calibrations. Hyperion was reviewed as Category I, which is the highest rating possible, but was not selected.