论文标题
任务自适应的元学习框架,用于提高空间概括性
Task-Adaptive Meta-Learning Framework for Advancing Spatial Generalizability
论文作者
论文摘要
对于各种社会应用,例如农业监测,水文预测和交通管理,需要时空的机器学习。这些应用在很大程度上依赖于表征空间和时间差异的区域特征。但是,时空数据通常在不同位置表现出复杂的模式和显着的数据可变性。许多现实世界应用中的标签也可能受到限制,这使得很难为不同位置分别训练独立的模型。尽管元学习在与小样本的模型适应中显示出希望,但现有的元学习方法在处理大量异质任务时仍然有限,例如,大量具有不同数据模式的位置。为了弥合差距,我们提出了任务自适应配方和模型不合时宜的元学习框架,该框架将区域异质的数据合并为位置敏感的元任务。我们在易于硬的任务层次结构后进行任务适应,其中不同的元模型适应了不同难度级别的任务。我们提出的方法的一个主要优点是,它改善了对大量异质任务的模型适应。它还通过将相应难度级别的元模型自动适应任何新任务来增强模型的概括。我们证明了我们提议的框架比各种基线和最先进的元学习框架的优越性。我们对实际作物产量数据的广泛实验表明,该方法在处理实际社会应用中处理空间相关的异质任务方面的有效性。
Spatio-temporal machine learning is critically needed for a variety of societal applications, such as agricultural monitoring, hydrological forecast, and traffic management. These applications greatly rely on regional features that characterize spatial and temporal differences. However, spatio-temporal data often exhibit complex patterns and significant data variability across different locations. The labels in many real-world applications can also be limited, which makes it difficult to separately train independent models for different locations. Although meta learning has shown promise in model adaptation with small samples, existing meta learning methods remain limited in handling a large number of heterogeneous tasks, e.g., a large number of locations with varying data patterns. To bridge the gap, we propose task-adaptive formulations and a model-agnostic meta-learning framework that ensembles regionally heterogeneous data into location-sensitive meta tasks. We conduct task adaptation following an easy-to-hard task hierarchy in which different meta models are adapted to tasks of different difficulty levels. One major advantage of our proposed method is that it improves the model adaptation to a large number of heterogeneous tasks. It also enhances the model generalization by automatically adapting the meta model of the corresponding difficulty level to any new tasks. We demonstrate the superiority of our proposed framework over a diverse set of baselines and state-of-the-art meta-learning frameworks. Our extensive experiments on real crop yield data show the effectiveness of the proposed method in handling spatial-related heterogeneous tasks in real societal applications.