论文标题
2D晶体上可变形的分子晶体:构建纳米级周期性诱捕位点的新方法
Deformable Molecular Crystal on 2D Crystal: A New Way to Build Nanoscale Periodic Trapping Sites for Interlayer Excitons
论文作者
论文摘要
在2D过渡金属二甲藻元化晶体(TMDC)异质结构上形成的纳米级莫伊尔图案为激子提供了定期的诱捕位点,这对于实现各种外来相位,例如人造激发剂,例如人造激发剂,例如人造激发剂,bose-inder-einstein coldentes和cocitonsistons和ecitonsistonsistons。在有机分子/TMDC异质结构上,可以通过其他自由度形成类似的周期势。我们利用2D分子晶体的结构可变形性作为创建可定期纳米级电位的自由度,该纳米级潜力可以捕获层间层中的激子(IXS)。具体而言,研究了两个半导体分子PTCDI和PTCDA,它们具有相似的带隙和电离电位,但在MOS2上形成了不同的晶格结构。MOS2上的PTCDI晶格几何扭曲了几何形式,与Crystal单位单位的两个分子的退化相比,它提升了Crystal单位的两个分子。退化解除导致分子轨道能的空间变化,幅度和周期性分别为〜0.2 eV和〜2 nm。另一方面,在PTCDA/MOS2中未观察到这种能量变化,其中PTCDA晶状体的变形要差得多。分子轨道能的周期性变化为IXS提供了有效的捕获位点。对于在PTCDI/MOS2上形成的IX,观察到电子在有机层朝向界面的快速空间定位,这证明了这些界面IX的陷阱的有效性。
The nanoscale moiré pattern formed at 2D transition metal dichalcogenide crystal (TMDC) heterostructures provides periodic trapping sites for excitons, which is essential for realizing various exotic phases such as artificial exciton lattices, Bose-Einstein condensates, and exciton insulators. At organic molecule/TMDC heterostructures, similar periodic potentials can be formed via other degrees of freedom. We utilize the structure deformability of a 2D molecular crystal as a degree of freedom to create a periodic nanoscale potential that can trap interlayer excitons (IXs). Specifically, two semiconducting molecules, PTCDI and PTCDA, which possess similar bandgaps and ionization potentials but form different lattice structures on MoS2, are investigated.The PTCDI lattice on MoS2 is distorted geometrically, which lifts the degeneracy of the two molecules within the crystal's unit cell. The degeneracy lifting results in a spatial variation of the molecular orbital energy, with an amplitude and periodicity of ~ 0.2 eV and ~ 2 nm, respectively. On the other hand, no such energy variation is observed in PTCDA/MoS2, where the PTCDA lattice is much less distorted. The periodic variation in molecular orbital energies provides effective trapping sites for IXs. For IXs formed at PTCDI/MoS2, rapid spatial localization of the electron in the organic layer towards the interface is observed, which demonstrate the effectiveness of these interfacial IX's traps.