论文标题
广义的多尺度纠缠重归其化ANSATZ:来自关键晶格模型的更准确的保形数据
A generalized multi-scale entanglement renormalization ansatz: more accurate conformal data from a critical lattice model
论文作者
论文摘要
多尺度的纠缠重新归一化ANSATZ(MERA)对晶格上量子关键的哈密顿量的基态进行了自然描述。从优化的MERA中,可以提取基础共形场理论的缩放维度。但是,即使在增加了键尺寸后,从MERA衍生的上升超级操作器中提取共形数据似乎具有有限的精度。在这里,我们根据越来越多的分离层提出了另一种ANSATZ。这导致了Mera的广义版本,从而改善了缩放维度的提取,如关键ISING模型的高斯MERA设置中所测试。
The multi-scale entanglement renormalization ansatz (MERA) provides a natural description of the ground state of a quantum critical Hamiltonian on the lattice. From an optimized MERA, one can extract the scaling dimensions of the underlying conformal field theory. However, extracting conformal data from the ascending superoperator derived from MERA seems to have a limited range of accuracy, even after increasing the bond dimension. Here, we propose an alternative ansatz based on an increasing number of disentangling layers. This leads to generalized versions of MERA that improve the extraction of scaling dimensions, as tested in the Gaussian MERA setting for the critical Ising model.