论文标题
拓扑azumaya代数与正交相关的分解
Decomposition of Topological Azumaya Algebras with Orthogonal Involution
论文作者
论文摘要
令$ \ mathcal {a} $为拓扑azumaya azumaya gegra $ $ mn $的代数,在CW复合$ x $ x $上的正交相互作用小于或等于$ \ min \ min \ min \ {m,n \} $。我们为正整数$ m $和$ n $提供条件,以便可以将$ \ Mathcal {a} $分解为拓扑azumaya代数的张量,该代数为$ m $ $ m $和$ n $,具有正交性的张量。
Let $\mathcal{A}$ be a topological Azumaya algebra of degree $mn$ with an orthogonal involution over a CW complex $X$ of dimension less than or equal to $\min\{m,n\}$. We give conditions for the positive integers $m$ and $n$ so that $\mathcal{A}$ can be decomposed as the tensor product of topological Azumaya algebras of degrees $m$ and $n$ with orthogonal involutions.