论文标题
超导码头阵列中的孤子与单个光子量子动力学
Soliton versus single photon quantum dynamics in arrays of superconducting qubits
论文作者
论文摘要
超导电路构成了未来实施量子处理器和模拟器的有前途的平台。电容耦合的Transmon Qubits的阵列自然会以有吸引力的现场相互作用实现Bose-Hubbard模型。这种多体系统的频谱的特征是定义明亮孤子的晶格类似物的低能局部状态。在这里,我们证明可以将这些明亮的孤子固定在系统中,并且发现孤子在保持其形状的同时移动。它的速度从组合相互作用和组成玻色子的数量来遵守扩展定律。相比之下,通过阵列的光子的源源运输是通过与明亮的孤子相比具有较高能量的扩展状态发生的。对于源/排水和阵列之间的弱耦合,源的种群和排水的时间及时振荡,链条始终保持几乎不足。发现这种现象依赖于平等。讨论了我们结果对实际实验实现的含义。
Superconducting circuits constitute a promising platform for future implementation of quantum processors and simulators. Arrays of capacitively coupled transmon qubits naturally implement the Bose-Hubbard model with attractive on-site interaction. The spectrum of such many-body systems is characterised by low-energy localised states defining the lattice analog of bright solitons. Here, we demonstrate that these bright solitons can be pinned in the system, and we find that a soliton moves while maintaining its shape. Its velocity obeys a scaling law in terms of the combined interaction and number of constituent bosons. In contrast, the source-to-drain transport of photons through the array occurs through extended states that have higher energy compared to the bright soliton. For weak coupling between the source/drain and the array, the populations of the source and drain oscillate in time, with the chain remaining nearly unpopulated at all times. Such a phenomenon is found to be parity dependent. Implications of our results for the actual experimental realisations are discussed.