论文标题
Hausdorff量的边界元素方法,用于分形筛网的声学散射
A Hausdorff-measure boundary element method for acoustic scattering by fractal screens
论文作者
论文摘要
声音柔软的分形屏幕即使表面尺寸为零,声波也会散布声波。为了解决这样的散射问题,我们使似乎是边界元素方法(BEM)的第一个应用,其中每个BEM基函数在分形集合中支持,并且与BEM矩阵形成相关的集成是相对于非直觉订单的Hausdorff量,而不是通常的(Lebesgue)表面测量。利用分形功能空间的最新结果,我们证明了此``hausdorff bem''''hausdorff bem'''''''''hausdorff bem''用于$ \ mathbb {r}^{r}^{n+1} $($ n = 1,2 $),当时是散射器,假定为$ \ mathbb的compact n $ \ n tipes $ \ \ n phisters $ \ n tipes n phister是(n-1,n] $中的约$ d \的$ d $ set,因此,尤其是散点器具有Hausdorff尺寸$ d $。对于一类迭代功能系统吸引者的分形,我们证明了Hausdorff Bem和SuperConverence的平稳性功能,以及在某些自然范围下的界限,在某些自然范围下,在某些自然范围下,在某些自然范围内,在某种程度上是在某种程度上进行界限。通过数值(Hausdorff度量)积分估计和对分形的逆估计,用于实现我们的Hausdorff BEM的数值正常例程,以及完全离散的收敛分析,我们显示了分散条件数量的估计,我们显示了数值实验,包括我们的理论上的散射结果,包括我们的理论效果。 $ \ mathbb {r}^2 $由Cantor Sets,在$ \ Mathbb {r}^3 $中,由Cantor Dusts。
Sound-soft fractal screens can scatter acoustic waves even when they have zero surface measure. To solve such scattering problems we make what appears to be the first application of the boundary element method (BEM) where each BEM basis function is supported in a fractal set, and the integration involved in the formation of the BEM matrix is with respect to a non-integer order Hausdorff measure rather than the usual (Lebesgue) surface measure. Using recent results on function spaces on fractals, we prove convergence of the Galerkin formulation of this ``Hausdorff BEM'' for acoustic scattering in $\mathbb{R}^{n+1}$ ($n=1,2$) when the scatterer, assumed to be a compact subset of $\mathbb{R}^n\times\{0\}$, is a $d$-set for some $d\in (n-1,n]$, so that, in particular, the scatterer has Hausdorff dimension $d$. For a class of fractals that are attractors of iterated function systems, we prove convergence rates for the Hausdorff BEM and superconvergence for smooth antilinear functionals, under certain natural regularity assumptions on the solution of the underlying boundary integral equation. We also propose numerical quadrature routines for the implementation of our Hausdorff BEM, along with a fully discrete convergence analysis, via numerical (Hausdorff measure) integration estimates and inverse estimates on fractals, estimating the discrete condition numbers. Finally, we show numerical experiments that support the sharpness of our theoretical results, and our solution regularity assumptions, including results for scattering in $\mathbb{R}^2$ by Cantor sets, and in $\mathbb{R}^3$ by Cantor dusts.