论文标题
如何构建用于磁化冷却的最佳磁铁组件:通过同几何分析结构优化
How to Build the Optimal Magnet Assembly for Magnetocaloric Cooling: Structural Optimization with Isogeometric Analysis
论文作者
论文摘要
在寻找更有效且对环境有害的冷却技术较少的过程中,磁化磁化领域被认为是一种有希望的选择。为了产生冷却跨度,旋转的永久磁体组件用于周期性磁化和去电磁材料,从而在磁场的应用下改变其温度。在这项工作中,针对商业化的轴向旋转永久磁体组件是使用拓扑和形状优化的计算设计。这是在等几何分析框架中有效促进的,在此框架中,将谐波进行谐波来将多种模型的旋转转子系统置入旋转转子系统。比较内部,外部和共旋转组件,并确定不同磁铁质量的优化设计。这些仿真用于使磁化材料中的磁通量密度匀浆。分析所得扭矩的不同几何参数。另外,研究了活性磁再生器中各向异性的影响,以指导磁通量。分析和分类不同的例子,以找到用于磁化冷却的最佳磁铁组件。
In the search for more efficient and less environmentally harmful cooling technologies, the field of magnetocalorics is considered a promising alternative. To generate cooling spans, rotating permanent magnet assemblies are used to cyclically magnetize and demagnetize magnetocaloric materials, which change their temperature under the application of a magnetic field. In this work, an axial rotary permanent magnet assembly, aimed for commercialization, is computationally designed using topology and shape optimization. This is efficiently facilitated in an isogeometric analysis framework, where harmonic mortaring is applied to couple the rotating rotor-stator system of the multipatch model. Inner, outer and co-rotating assemblies are compared and optimized designs for different magnet masses are determined. These simulations are used to homogenize the magnetic flux density in the magnetocaloric material. The resulting torque is analyzed for different geometric parameters. Additionally, the influence of anisotropy in the active magnetic regenerators is studied in order to guide the magnetic flux. Different examples are analyzed and classified to find an optimal magnet assembly for magnetocaloric cooling.